【Python 笔记】【Pandas】入门 Pandas 及其基本数据结构

本文对 Pandas 做基本介绍.

1. 简介

Pandashttps://pandas.pydata.org/
GitHubhttps://github.com/pandas-dev/pandas/

  Pandas 基于 NumPy ,它是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. Pandas提供了大量能使我们快速便捷地处理数据的函数和方法.

1.1 历史起源

  2008年,Wes McKinny一人挑起了Pandas库的设计和开发工作.

  2012 年,他的同事Sien Chang加入开发,他两一起开发了Python社区最为有用的库之一 – Pandas

  数据分析工作需要一个专门的库,它能够用最简单的方式提供数据处理、数据抽取和数据操作所需要的全部工具,开发Pandas正是为了满足这个需求.

  Wes MicKinny选择以Numpy库作为Python库Pandas的基础进行设计,可以说,该选择对于Pandas的成功和它的迅速扩展起着非常重要的作用. 事实上,选择Numpy为基础,不仅使Pandas能和其他大多数模块相兼容,而且还能借力Numpy模块在计算方面性能高的优势.

  另外一个意义深远的决定是为数据分析专门设计了两种数据结构. 实际情况是,Pandas 没有使用Pandas已有的内置数据结构,也没有使用其他库的数据结构,而是开发了两种新型的数据结构. 这两种数据结构的设计初衷是用于关系型或带标签的数据. 用它们管理与SQL关系数据库和Excel工作表具有类似特征的数据很方便.

1.2 安装 Pandas

通过 conda 安装:

# conda
conda install pandas

通过 PyPI 安装:

# or PyPI
pip install pandas

1.3 Pandas 主要特点

  • 快速高效的DataFrame对象,具有默认和自定义的索引。
  • 将数据从不同文件格式加载到内存中的数据对象的工具。
  • 丢失数据的数据对齐和综合处理。
  • 重组和摆动日期集。
  • 基于标签的切片,索引和大数据集的子集。
  • 可以删除或插入来自数据结构的列。
  • 按数据分组进行聚合和转换。
  • 高性能合并和数据加入。
  • 时间序列功能。

2. 基本数据结构

  • Series:一维数组,与Numpy中的一维array类似,二者与Python基本的数据结构List也很相近。Series如今能保存不同种数据类型,字符串、boolean值、数字等。
    • Time-Series:以时间为索引的Series。
  • DataFrame:二维的表格型数据结构,很多功能与R中的data.frame类似,可以将DataFrame理解为Series的容器。
  • Panel :三维数组,可以理解为DataFrame的容器。

 
  可以简单理解为,高维数据结构是低维数据结构的容器。 例如,DataFrameSeries的容器,PanelDataFrame的容器。
 
 

维数和描述

数据结构维数描述
Series1一维数组,大小不可变,一旦创建则长度不可变化,由同种数据类型元素组成。
DataFrame2二维数组,大小可变的表格结构,它含有一组有序的列,每列可以是不同的数据类型(整型、字符串、布尔值等)
Panel3大小可变的三维数组
   

可变性

数据结构数据大小
Series数据可变大小不可变
DataFrame数据可变大小可变
Panel数据可变大小可变

2.1 Series

序列 (Series) 是由相同数据类型组成的一维数组。例如,如下Series是整数:10, 23, 56,…的集合。

10235617526173902672

2.2 DataFrame

数据帧 (DataFrame) 是大小可变的数据结构,每列可以是不同的数据类型(整型、字符串、布尔值等)。

姓名年龄性别等级
Maxsu254.45
Katie342.78
Vina463.9
Liax女4.6

上表表示某销售团队的绩效评级数据,数据以行和列表示,每列表示一个属性,每行代表一个人。

DataFrame 四列的数据类型分别为:字符串,整数,字符串,浮点型。

2.3 Panel

面板 (Panel) 可以由不同的数据类型构成的三维数据结构,PanelDataFrame 的容器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值