tensorflow
刀么克瑟拉莫
那温热的牛奶瓶在你手中握紧
展开
-
tensorflow实现深度可分离卷积
数据库:MNIST,与这里对比tf.nn.depthwise_conv2d的理解看这里,主要是对卷积核参数的理解,即(高度,宽度,输入通道,每个通道得到的输出通道数)训练速度慢,收敛也慢,刚开始就像没训练的样子,只将一个卷积层改成深度可分离卷积就增加了12次迭代import tensorflow as tfimport numpy as npimport randomimport cv2,sys,osimport MyDatadata=tf.placeholder(tf.float32.原创 2021-12-10 18:01:14 · 1758 阅读 · 3 评论 -
Model Garden for TensorFlow问题集锦
1.ModuleNotFoundError: No module named ‘object_detection’export PYTHONPATH=/home/lwd/code/dl/models/research2.ImportError: cannot import name ‘anchor_generator_pb2’protoc object_detection/protos/*.proto --python_out=.3.ImportError: cannot import.原创 2021-12-07 16:23:46 · 321 阅读 · 0 评论 -
tensorflow简洁实现MNIST识别
一、MyData.py数据读取,进行了简单的归一化,即除以255.0dataset_path是保存图片路径和标签的txt的路径,每行的格式是/home/lwd/data/mnist/image/59999.png 8MNIST转化成图片看这里import osimport cv2import randomimport numpy as npimport tensorflow as tfclass Dataset(object): def __init__(self, data原创 2021-12-02 17:06:48 · 1383 阅读 · 0 评论 -
tensorflow报错:Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
1.确认tensorflow是否与cuda,cudnn对应,在这里查看2.修改设置os.environ['CUDA_VISIBLE_DEVICES']='0,1'# tf 1.13config = tf.ConfigProto()config.gpu_options.allow_growth=Truesess = tf.Session(config=config)sess.run(tf.global_variables_initializer())# tf 2.0# gpu = tf.原创 2021-06-07 14:30:42 · 204 阅读 · 0 评论 -
tensorflow版本问题
1.不可改条件GeForce GTX 16602.可配置内容显卡驱动:我装的430.50,在官网查,当前最新的460.32.03也行CUDA:这篇博客说CUDA版本和显卡没对应关系,但我用CUDA8就不行,现在用的10.1,可能是我把驱动打包安装的原因tensorflow:不同项目要求不同的版本,与之对应的CUDA版本也不同,有需要再说cuDNN:和CUDA版本有关系3.CUDA多版本后续再补,先这样吧...原创 2021-01-22 11:58:52 · 163 阅读 · 0 评论 -
tensorflow知识点
1.TF.VARIABLE、TF.GET_VARIABLE、TF.VARIABLE_SCOPE以及TF.NAME_SCOPE关系详解tf.Variable的变量名是一个可选项,tf.get_variable必须指定变量名,因为tf.get_variable如果存在就不新建TensorFlow中通过变量名获取变量的机制主要是通过tf.get_variable和tf.variable_scope实现的。reuse=False时,tf.variable_scope创建变量;reuse=True时,tf.原创 2021-11-30 14:36:49 · 111 阅读 · 0 评论 -
tensorflow卷积层模板
在这里看的但我认为downsample部分不用自己填充,只设置步长为2就行,padding用SAME。因为filter的大小一般是奇数,padding用SAME,在卷积的时候,自动填充filters_shape[0] // 2def convolutional(input_data, filters_shape, trainable, name, downsample=False, activate=True, bn=True): with tf.variable_scope(name):.原创 2021-11-25 16:55:47 · 280 阅读 · 0 评论