题目描述
已知 n 个整数 x1,x2,…,xn ,以及1个整数k(k<n)。从n个整数中任选k个整数相加,可分别得到一系列的和。例如当n=4,k=3,4个整数分别为3,7,12,19时,可得全部的组合与它们的和为:
3+7+12=22
3+7+19=29
7+12+19=38
3+12+19=34。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29。
输入输出格式
输入格式:
键盘输入,格式为:
n,k(1 <= n <= 20, k < n)
x1,x2,…,xn (1 <= xi <= 5000000)
输出格式:
屏幕输出,格式为: 1个整数(满足条件的种数)。
输入样例#1 | 输出样例#1 |
---|---|
4 3 3 7 12 19 | 1 |
思考
问题的关键点是,如何实现在N个数字中将其中的M个数字随机组合并不出现重复的情况。(即,位置不同但取的M个数是一样的情况为重复。 eg. 在1, 2, 3, 4, 5中取3个数,1, 2, 3 与 3, 2, 1是一种情况)
对于如何在N个数字中取M个数字这个问题,在看了其他人博客(参考博客)学习后采用的方法是
后往前选取,选定位置i后,再在前i-1个里面选取m-1个。
如 1 2 3 4 5 中选取 3 个 1、选取5后,再在前4个里面选取2个,而前4个里面选取2个又是一个子问题,递归即可。
2、如果不包含5,直接选定4,那么再在前3个里面选取2个,而前三个里面选取2个又是一个子问题,递归即可。
3、如果也不包含4,直接选取3,那么再在前2个里面选取2个,刚好只有两个。 纵向看,1、2、3刚好是一个for循环,初值为5,终值为m
横向看,该问题为一个前i-1个中选m-1的递归。
然后当m为0后,表示已经取了K个数,将b中存储的K个数相见,然后判断sum是否为素数,若为素数则计数t+1。
最后输出t就是最后答案。
AC代码
#include <stdio.h>
int sushu(int n);
void fun(int n, int m);
int a[22], b[21], n, k, t = 0;
int main()
{
int i;
scanf("%d%d", &n, &k);
int b[k];
for(i = 1; i <= n; i++)
scanf("%d", &a[i]);
fun(n, k);
printf("%d", t);
}
void fun(int n, int m)//从n里面选m个数字
{
int i, sum;
if(m == 0)
{
sum = 0;
for(i = 0; i < k; i++)
sum += b[i];
if(sushu(sum))
t++;
return;
}
for(i = n ; i >= m; i--)
{
b[m - 1] = a[i];
fun(i - 1, m - 1);
}
}
int sushu(int n)
{
int i;
for(i = 2; i < n; i++)
if(n % i == 0)
break;
if(i == n || n == 2)
return 1;
else
return 0;
}