根据色盲意识网站的数据,色觉缺陷影响了世界上大约 8% 的男性和 0.5% 的女性,这意味着全球约有 3 亿人患有某种程度的色盲。在数据可视化方面,不小心选择颜色和图形元素会使图表变得模棱两可,甚至对许多人来说难以理解。
事实上,不仅色盲的人在解释用粗心选择的配色方案绘制的数据时会遇到问题。黑白打印或阳光照射在设备屏幕上等常见事物也可能影响非色盲人士的色觉。
尽管色盲有多种类型,但创建每个人都可以轻松理解的数据可视化实际上非常简单——这一切都归结为做出正确的选择。尽管如此,现在创建的大量内容对色盲并不友好。看起来,主要问题是大多数数据科学家在设计数据可视化时仍然不习惯考虑这个因素。
创建色盲友好型数据可视化的两个简单步骤:
第 1 步:选择正确的颜色
现在的问题是:是否有可能选择每个人都可以轻松区分的颜色,无论色盲如何?鉴于有这么多不同的色盲条件,这可能不是一件容易的事。一般建议是避免有问题的颜色组合,如红色/绿色、绿色/棕色、绿色/蓝色、蓝色/灰色等。
幸运的是,其他人已经经历了这个过程,并找到了适合大多数色盲人群的颜色组合,所以你不必自己做这一切。您可以在线搜索此类组合并使用您最喜欢的组合。甚至还有一些在线工具可以帮助您根据您的要求选择适合色盲的配色方案,例如 ColorBrewer 和 Coolors。
ColorBrewer
虽然使用色盲友好的调色板可以使大多数人更容易理解您的数据可视化,但它可能仍然不是一个完美的解决方案。通常,不建议仅使用颜色变化对信息进行编码,即使它们是可访问的颜色。这就是为什么您还需要第 2 步。
第 2 步:使用不同的形状、图案、纹理或标签
确保人们能够完全理解您的绘图的最佳方法是完全消除对可区分颜色的需求,方法是使用其他方法来区分其中的数据序列。(这并不意味着你不应该关心你在绘图中使用的颜色——除了使用色盲友好的调色板之外,你还应该这样做,以防万一。
例如,我们可以通过对每个数据系列使用不同的形状来轻松改进上面的图表,如下所示:

对于其他类型的地块,您可以使用其他策略。对于折线图,除了不同的颜色外,还可以使用不同的线阵和/或不同的线宽。不幸的是,我无法找到如何在 Google 表格中使用虚线或虚线图案,但我经常使用 LaTeX/PGFPlots 和 Python/Matplotlib 来做到这一点,所以我确信其他广泛使用的绘图软件也支持它们。下面是使用 Matplotlib 创建的示例:

对于条形图或饼图,我建议应用不同的填充纹理:

总结
Summary 总结
1 选择适合色盲的调色板:如今,ColorBrewer 和 Coolors 等在线工具可以很容易地找到合适的配色方案。您还可以使用像 Coblis 这样的在线色盲模拟器来检查您的情节在其他人眼中的样子。
2 但不要只依赖颜色:在绘图中添加不同的几何形状、线条图案、填充纹理甚至标签。这将提高每个人的可读性,包括没有色盲的人。
文章来源:https://towardsdatascience.com/two-simple-steps-to-create-colorblind-friendly-data-visualizations-2ed781a167ec
本文由 mdnice 多平台发布