图像到图像的映射

1.单应性变换

单应性是什么?

不严谨的定义:用 [无镜头畸变] 的相机从不同位置拍摄 [同一平面物体] 的图像之间存在单应性,可以用 [投影变换] 表示 。
在这里插入图片描述
简单说就是:
在这里插入图片描述
其中 [公式] 是Left view图片上的点, [公式] 是Right view图片上对应的点。

在这里给出严谨的定义:单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。在这里,平面是指图像或者三维中的平面表示。单应性变换具有很强的实用性,比如图像配准,图像纠正和纹理扭曲,以及创建全景图像,我们将频繁的使用单应性变换。本质上,单应性变换H,按照下面的方程映射二维中的点(齐次坐标意义下):
在这里插入图片描述
对于图像平面内(甚至是三维中的点,后面我们会介绍到)的点,齐次坐标是个非常有用的表示方式。点的齐次坐标是依赖于其尺度定义的,所以,x=[x,y,w]=[ax,ay,aw]=[x/w,y/w,1]都表示同一个二维点。因此,单应性矩阵H也仅依赖尺度定义,所以,单应性矩阵具有8个独立的自由度。我们通常使用w=1来归一化点,这样,点具有唯一的图像坐标x和y。这个额外的坐标是的我们可以简单地使用一个矩阵来表示变换。下面的函数可以实现对点进行归一化和转换齐次坐标的功能:

// An highlighted block
    """在齐次坐标意义下,对点集进行归一化,是最后一行为1"""
    for row in points:
        row /= points[-1]
    return points

def make_homog(points):
    """将点集(dim×n的数组)转换为齐次坐标表示"""

    return vstack((points,ones((1, points.shape[1]))))

1.1直接线性变换算法

单应性矩阵可以有两幅图像(或者平面)中对应点对计算出来。前面已经提到过,一个完全射影变换具有8个自由度。根据对应点约束,每个对应点对可以写出两个方程,分别对应于x和y坐标。因此,计算单应性矩阵H需要4个对应点对。

DLT(Direct Linear Transformation,直接线性变换)是给定4个点或者更多对应点对矩阵,来计算单应性矩阵H的算法。将单应性矩阵H作用在对应点上,重新写出该方程,我们可以得到下面的方程:
在这里插入图片描述
或者Ah=0,其中A是一个具有对应点对二倍数量行数的矩阵。将这些对应点对方程的系数堆叠到一个矩阵红,我们可以使用SVD算法找到H的最小二乘解。

// An highlighted block
def H_from_points(fp, tp):
    """使用线性DLT方法,计算单应性矩阵H,使fp映射到tp。点自动进行归一化"""

    if fp.shape != tp.shape:
        raise RuntimeError('number of points do not match')

    # 对点进行归一化(对数值计算很重要)
    # --- 映射起始点 ---
    m = mean(fp[:2], axis=1)
    maxstd = max(std(fp[:2], axis=1)) + 1e-9
    C1 = diag([1/maxstd, 1/maxstd, 1])
    C1[0][2] = -m[0]/maxstd
    C1[1][2] = -m[1]/maxstd
    fp = dot(C1,fp)
    
    # --- 映射对应点 ---
    m = mean(tp[:2], axis=1)
    maxstd = max(std(tp[:2], axis=1)) + 1e-9
    C2 = diag([1 / maxstd, 1 / maxstd, 1])
    C2[0][2] = -m[0] / maxstd
    C2[1][2] = -m[1] / maxstd
    tp = dot(C2, tp)
    
    # 创建用于线性方法的矩阵,对于每个对应对,在矩阵中会出现两行数值
    nbr_correspondences = fp.shape[1]
    A = zeros((2 * nbr_correspondences, 9))
    for i in range(nbr_correspondences):
        A[2*i] = [-fp[0][i], -fp[1][i],-1,0,0,0,
                  tp[0][i]*fp[0][i],tp[0][i]*fp[1][i],tp[0][i]]
        A[2*i+1] = [0,0,0,-fp[0][i],-fp[1][i],-1,
                    tp[1][i]*fp[0][i],tp[1][i]*fp[1][i],tp[1][i]]
        
    U,S,V = linalg.svd(A)
    H = V[8].reshape((3,3))
    
    #反归一化
    H = dot(linalg.inv(C2),dot(H,C1))
    
    #归一化,然后返回
    return H / H[2,2]

1.2 仿射变换

仿射变换的变换矩阵定义为下图公式,H矩阵最后一排h7=h8=0,h9=1,且权重w=1。c和 f 表示x和y的平移量
在这里插入图片描述
仿射变换可以用上面的DLT算法估计得出:

def Haffine_from_points(fp, tp):
    """计算H仿射变换,使得tp是fp经过仿射变换H得到的"""

    if fp.shape != tp.shape:
        raise RuntimeError('number of points do not match')
        
    # 对点进行归一化(对数值计算很重要)
    # --- 映射起始点 ---
    m = mean(fp[:2], axis=1)
    maxstd = max(std(fp[:2], axis=1)) + 1e-9
    C1 = diag([1/maxstd, 1/maxstd, 1]) 
    C1[0][2] = -m[0]/maxstd
    C1[1][2] = -m[1]/maxstd
    fp_cond = dot(C1,fp)
    
    # --- 映射对应点 ---
    m = mean(tp[:2], axis=1)
    C2 = C1.copy() # 两个点集,必须都进行相同的缩放
    C2[0][2] = -m[0]/maxstd
    C2[1][2] = -m[1]/maxstd
    tp_cond = dot(C2,tp)
    
    # 因为归一化后点的均值为0,所以平移量为0
    A = concatenate((fp_cond[:2],tp_cond[:2]), axis=0)
    U,S,V = linalg.svd(A.T)
    
    # 如Hartley和Zisserman著的Multiplr View Geometry In Computer,Scond Edition所示,
    # 创建矩阵BC
    tmp = V[:2].T
    B = tmp[:2]
    C = tmp[2:4]
    
    tmp2 = concatenate((dot(C,linalg.pinv(B)),zeros((2,1))), axis=1) 
    H = vstack((tmp2,[0,0,1]))
    
    # 反归一化
    H = dot(linalg.inv(C2),dot(H,C1))
    
    return H / H[2,2]

2.图像扭曲

仿射变换可以用于很多的应用,图像扭曲就是其中一个应用。当仿射变换应用于图像扭曲时,变换矩阵定义下图公式,其中向量s指定了变换的尺度,如果s=1,那么该变换能够保持距离不变,此时变换为刚体变换,θ表示旋转(扭曲)的角度
在这里插入图片描述

from numpy import *
from matplotlib.pyplot import *
from scipy import ndimage
from PIL import Image
im = array(Image.open('raccoon.jpg').convert('L'))
H = array([[1.4,0.05,-100],[0.05,1.5,-100],[0,0,1]])
im2 = ndimage.affine_transform(im, H[:2,:2],(H[0,2],H[1,2]))

gray()
subplot(121)
imshow(im)
axis('off')
subplot(122)
imshow(im2)
axis('off')
show()

运行结果
在这里插入图片描述

2.1图像中的图像

仿射扭曲的一个简单例子是,将图像或者图像的一部分放置在另一幅图像中,是的他们能够和指定的区域或者标记物对齐。


def image_in_image(im1, im2, tp):
    """使用仿射变换将im1放置在im2上,使im1图像的角和tp尽可能的靠近
        tp是齐次表示的,并且是按照从左上角逆时针计算的"""
    
    # 扭曲的点
    m,n = im1.shape[:2]
    fp = array([[0,m,m,0],[0,0,n,n],[1,1,1,1]])
    
    # 计算仿射变换,并且将其应用于图像im1中
    H = Haffine_from_points(tp,fp)
    im1_t = ndimage.affine_transform(im1,H[:2,:2],
                    (H[0,2],H[1,2]),im2.shape[:2])
    alpha = (im1_t > 0)
    
    return (1-alpha)*im2 + alpha*im1_t
im1 = array(Image.open('dog.jpg').convert('L'))
im2 = array(Image.open('raccoon.jpg').convert('L'))

gray()
subplot(131)
imshow(im1)
axis('equal')
axis('off')
subplot(132)
imshow(im2)
axis('equal')
axis('off')

# 选定一些目标点
tp = array([[264, 538, 540, 264], [40, 36, 605, 605], [1, 1, 1, 1]])

im3 = image_in_image(im1, im2, tp)
subplot(133)
imshow(im3)
axis('equal')
axis('off')
show()

运行结果
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值