72. Edit Distance

本文介绍了一种算法,通过动态规划解决给定两个字符串word1和word2之间的编辑距离问题,即最少需要执行插入、删除和替换字符的操作次数,以使word1变为word2。
摘要由CSDN通过智能技术生成

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

Constraints:

  • 0 <= word1.length, word2.length <= 500
  • word1 and word2 consist of lowercase English letters.
class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size() + 1));
        for(int i = 0;i<=word1.size();i ++)
            dp[i][0] = i;
        for(int j = 0;j<=word2.size();j ++)
            dp[0][j] = j;
        for(int i = 1;i <= word1.size();i ++)
            for(int j = 1;j<=word2.size();j++){
                if(word1[i-1]==word2[j-1])
                    dp[i][j]=dp[i-1] [j-1];
                else{
                    dp[i][j] = min({dp[i-1][j],dp[i][j-1],dp[i-1][j-1]}) + 1;
                }
            }
        return dp[word1.size()][word2.size()];

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值