网络舆论传播分析:自然语言处理与图分析相融合

本文探讨了在网络信息技术发展中,如何利用人工智能技术,如自然语言处理、图分析和深度学习模型,优化关键词筛选、话题句提取和舆论传播分析,以实现对网络舆论的健康稳定管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源自:《信息安全与通信保密》

作者:徐明   魏国富   殷钱安

优化识别能力和溯源能力

在网络信息技术快速发展的当下,做好网络舆论分析是确保网络舆论信息健康稳定传播的基本前提。

图片

图片

图片

介 绍

图片

图片

图片

图 1 自然语言处理与图分析相结合的模型思路

方 法

图片

图片

2.1

图片

   关键词筛选

图片

2.1.1

  原始语料数据的预处理

图片

2.1.2

  文本分词技术的应用

图片

图片

图片

2.1.3

 目标关键词的筛选

图片

图片

图片

图片

图片

图 2 文本语料关键词的提取方法

2.2

图片

 话题句提取

图片

图片

图片

图 3 文本语料主题句的提取流程

2.2.1

 词嵌入处理

图片

图片

图片

2.2.2

  构建无向有权图

图片

图片

图片

2.2.3

 话题句提取

图片

图片

2.3

图片

  舆论传播分析

图片

2.3.1

构建舆论话题关系图

图片

2.3.2

 舆论传播分析

图片

图片

图 4 对复杂网络结构进行群体划分的方法

图片

图片

图片

图 5 图分析方法在舆论话题分析中的部分节点展示

图片

图片

表 1 双向 LSTM+CRF 模型语义分析与传统分析效果对比

图片

图片

图 6 舆论传播路径的溯源示意图

图片

声明:公众号转载的文章及图片出于非商业性的教育和科研目的供大家参考和探讨,并不意味着支持其观点或证实其内容的真实性。版权归原作者所有,如转载稿涉及版权等问题,请立即联系我们删除。

“人工智能技术与咨询”  发布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值