三层神经网络简单实现(Python版)

本文详细介绍了如何使用Python实现一个简单的三层神经网络,涵盖了深度学习基础,包括神经网络结构、反向传播(BP)算法的应用。通过实例代码解析,帮助读者理解神经网络的工作原理。
摘要由CSDN通过智能技术生成
#!/usr/bin/python
#--coding=utf-8--
import numpy as np

def nonlin(x,deriv = False):
        if(deriv == True):
            return x*(1-x)
        return 1/(1+np.exp(-x))

X = np.array([[0,0,1],
              [0,1,1],
              [1,0,1],
              [1,1,1]])

y = np.array([[0],[1],[1],[0]])
np.random.seed(1)

syn0 = 2*np.random.random((3,4)) - 1  #第一层权值
syn1 = 2*np.random.random((4,1)) - 1  #第二层权值

for j in xrange(60000):
    L0 = X                        #输入层
    L1 = nonlin(np.dot(L0,syn0))  #隐含层
    L2 = nonlin(np.dot(L1,syn1))  #输出层

    L2_error = y - L2

    if(j%10000) == 0:
        print "Erroe: " + str(np.mean(np.abs(L2_error)))

    L2_delta = L2_error*nonlin(L2,deriv=True) #基于置信度衡量的输出误差,即当斜率很平缓时,结果是很让人相信的

    L1_error = L2_delta.dot(syn1.T) #L2_delta的权值是由syn1的权值决定的,因此可以计算隐含层误差
    L1_delta = L1_error*nonlin(L1,deriv=True)

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值