#!/usr/bin/python
#--coding=utf-8--
import numpy as np
def nonlin(x,deriv = False):
if(deriv == True):
return x*(1-x)
return 1/(1+np.exp(-x))
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
y = np.array([[0],[1],[1],[0]])
np.random.seed(1)
syn0 = 2*np.random.random((3,4)) - 1 #第一层权值
syn1 = 2*np.random.random((4,1)) - 1 #第二层权值
for j in xrange(60000):
L0 = X #输入层
L1 = nonlin(np.dot(L0,syn0)) #隐含层
L2 = nonlin(np.dot(L1,syn1)) #输出层
L2_error = y - L2
if(j%10000) == 0:
print "Erroe: " + str(np.mean(np.abs(L2_error)))
L2_delta = L2_error*nonlin(L2,deriv=True) #基于置信度衡量的输出误差,即当斜率很平缓时,结果是很让人相信的
L1_error = L2_delta.dot(syn1.T) #L2_delta的权值是由syn1的权值决定的,因此可以计算隐含层误差
L1_delta = L1_error*nonlin(L1,deriv=True)
三层神经网络简单实现(Python版)
最新推荐文章于 2024-09-09 00:08:20 发布
本文详细介绍了如何使用Python实现一个简单的三层神经网络,涵盖了深度学习基础,包括神经网络结构、反向传播(BP)算法的应用。通过实例代码解析,帮助读者理解神经网络的工作原理。
摘要由CSDN通过智能技术生成