最大似然估计与最大后验估计

前言

本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。

MLE VS MAP

最大似然函数(MLE)和最大后验概率估计(MAP)是两种完全不同的估计方法,最大似然函数属于频率派统计(认为存在唯一真值 θ),最大后验估计属于贝叶斯统计(认为 θ 是一个随机变量,符合一定的概率分布),这是两种认识方法的差异。模型不变,概率是参数推数据,统计是数据推参数。

最大似然估计

似然函数是一种关于模型中参数的函数,是根据模型的观测值,估计模型中参数的值。给定输出 x ,关于 θ 的似然函数 L(θ|x) 数值上等于给定参数 θ 后变量 X 的概率。其数学定义为:

L ( θ ∣ x ) = f θ ( x ) = P θ ( X = x ) L(θ|x)=f_θ(x)=P_θ(X=x) L(θx)=fθ(x)=Pθ(X=x)

最大似然估计是其中的一种好的估计,在样本趋近于无穷时,最大似然是收敛率最好的渐进估计,且由于它的一致性和统计效率,在机器学习中也是首选的估计方法。在独立同分布情况下:

θ ^ M L E = a r g m a x P ( X ; θ ) = a r g m a x P ( x 1 ; θ ) P ( x 2 ; θ ) . . . P ( x n ; θ ) = a r g m a x log ⁡ ∏ i = 1 n P ( x i ; θ ) = a r g m a x ∑ i = 1 n log ⁡ P ( x i ; θ ) = a r g m i n − ∑ i = 1 n log ⁡ P ( x i ; θ ) / / 负 对 数 似 然 \hatθ_{MLE}=argmaxP(X;θ)=argmaxP(x_1;θ)P(x_2;θ)...P(x_n;θ) =argmax\log\prod_{i=1}^nP(x_i;θ)\\\\=argmax\sum_{i=1}^n\log P(x_i;θ) =argmin-\sum_{i=1}^n\log P(x_i;θ)//负对数似然 θ^MLE=argmaxP(X;θ)=argmaxP(x1;θ)P(x2;θ)...P(xn;θ)=argmaxlogi=1nP(xi;θ)=argmaxi=1nlogP(xi;θ)=argmini=1nlogP(xi;θ)//

由于对数函数单调增,因此想要求 L 的最大值,可以求其对数作为求其最大值的函数,这样求出的结果是相同的。深度学习所做分类任务中用到的交叉熵本质是求最大似然函数。

条件最大似然估计

θ ^ M L E = a r g m a x P ( Y ∣ X ; θ ) = a r g m a x ∑ i = 1 m log ⁡ P ( y ( i ) ∣ x ( i ) ∣ θ ) \hatθ_{MLE}=argmaxP(Y|X;θ)=argmax\sum_{i=1}^{m}\log{P(y^{(i)}|x^{(i)}|θ)} θ^MLE=argmaxP(YX;θ)=argmaxi=1mlogP(y(i)x(i)θ)

最大后验估计

贝叶斯公式:

P ( θ ∣ x ) = P ( x ∣ θ ) P ( θ ) P ( x ) P(θ|x)=\frac{P(x|θ)P(θ)}{P(x)} P(θx)=P(x)P(xθ)P(θ)

其中 P(x|θ) 是似然函数,P(θ) 是先验概率。

则最大后验估计的数学定义为:

θ ^ M A P ( x ) = arg ⁡ max ⁡ θ f ( θ ∣ x ) = arg ⁡ max ⁡ θ f ( x ∣ θ ) g ( θ ) ∫ ϑ f ( x ∣ ϑ ) g ( ϑ ) d ϑ = arg ⁡ max ⁡ θ f ( x ∣ θ ) g ( θ ) \hat \theta_{MAP}(x)=\arg \max_\theta f(\theta|x)=\arg \max_\theta \frac{f(x|\theta)g(\theta)}{\int_\vartheta f(x|\vartheta)g(\vartheta)d\vartheta}=\arg\max_\theta f(x|\theta)g(\theta) θ^MAP(x)=argθmaxf(θx)=argθmaxϑf(xϑ)g(ϑ)dϑf(xθ)g(θ)=argθmaxf(xθ)g(θ)

theta 为需要估计的参数,f 为概率,g 为先验估计,最大化后验估计通过 f·g 求得。当先验分布为常数时,最大后验估计与最大似然估计重合。

总结

最大似然估计与最大后验估计对比分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值