怎么理解最大后验估计(Maximum A Posteriori, MAP)

本文是从一个小白的角度来解读最大后验估计(MAP), 以及解释MAP和MLE(最大似然估计)的区别

关于如何解读MLE,请阅读我的上一篇文章:

怎么理解最大似然估计(Maximum Likelihood Estimation, MLE)-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/zczyyds/article/details/141404578?spm=1001.2014.3001.5502

前置知识(可跳过)

由于最大后验估计会涉及贝叶斯公式,在这里补充一些概率论最基础的内容,已经掌握可以直接跳过。

条件概率

事件A和事件B是两个随机事件,并且事件B发生的概率P(B)不为0,那么在事件B发生的情况下,事件A发生的概率是: P(A|B) = \frac{P(AB)}{P(B)}

这是很好理解的,分母代表事件B发生的情况,在事件B发生后,事件AB同时发生的事件所占的比重,就是B发生后,事件A发生的概率了。

条件概率的意义是由因索果,有了导致事件发生的原因,计算事件发生的可能性

贝叶斯公式

有了上面的条件概率,我们可以推导出贝叶斯公式

与条件概率不同,贝叶斯公式的意义是由果索因,我们知B已经发生,计算导致事件发生的某个原因(这里是原因A)的可能性

连续型随机变量,概率密度函数,分布函数

X是连续型随机变量,X的分布函数为F(x),概率密度函数为p(x),那么可以得到:

F(x) = \int_{-\infty}^{x} p(t)dt

F(x)指的是分布在负无穷到x的范围的概率:

均匀分布

在区间[a,b]上均匀分布的概率密度函数是 :

p(x) = \{^{\frac{1}{b-a} \hspace{6pt} a<x<b}_{0 \hspace{6pt} others}

最大后验估计(Maximum A Poteriori, MAP)

我们可以用一个最简单的转轮盘模型来解释:

假设我们有一个可转动的轮盘,轮盘只有两种转动结果:获奖/未获奖。

现在转了五次轮盘,我们已知的结果是三次获奖,两次未获奖(记为事件A)

求解获奖的概率是多少(记为 θ ,并且\theta满足均值0.6,方差1的高斯分布),才能使得这样的结果的可能性最大?

首先我们可以表示出事件的先验概率(即在 θ 的前提下,发生事件A的概率):

P(A|\theta) = \theta^3(1-\theta)^2P(A|\theta) = \theta^3 (1-\theta)^2

求最大后验估计可以表示为(推导过程可见文章上面的贝叶斯公式):

\mathop{\arg\max}\limits_{\theta} \hspace{3pt}P(\theta|A) = \mathop{\arg\max}\limits_{\theta} \hspace{3pt}\frac{P(A\theta)}{P(A)}=\mathop{\arg\max}\limits_{\theta} \hspace{3pt}\frac{P(\theta)P(A|\theta)}{P(A)}

由于事件A已经发生,并不影响计算,所以最终问题化简为只考虑似然函数和先验分布:

\mathop{\arg\max}\limits_{\theta} \hspace{3pt}P(\theta)P(A|\theta)=\mathop{\arg\max}\limits_{\theta} \hspace{3pt}\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(\theta-0.6)^2}{2\sigma^2}}\theta^3(1-\theta)^2

同时取对数,得到需要求最大值的部分为(省略了argmax):

ln(\frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{(\theta-0.6)^2}{2\sigma^2}}\theta^3(1-\theta)^2) \\ =ln(\frac{1}{\sqrt{2\pi\sigma}}) - \frac{(\theta-0.6)^2}{2\sigma^2} + 3ln(\theta) + 2ln(1-\theta))\\ =ln(\frac{1}{\sqrt{2\pi}}) - \frac{(\theta-0.6)^2}{2} + 3ln(\theta) + 2ln(1-\theta))\\

对这部分求导,求零点,得到函数的极大值点:

\theta^3 - 1.6\theta^2-0.4\theta+3=0

解得在(0,1)范围内的值为0.8998

因此就可以根据MAP得到参数值为0.8998

与MLE不同,MAP需要考虑似然函数,以及参数的先验分布,如果我们可以肯定数据的先验分布是可靠的,就可以采用最大后验估计-MAP。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值