ByteTrack(Byte-based Association for Multi-Object Tracking)是一种基于检测的在线多目标跟踪(MOT)算法,由字节跳动团队于2021年提出。其核心创新在于充分利用检测框的所有置信度分数(包括低分检测框)进行数据关联,显著提升了复杂场景(如遮挡、模糊)下的跟踪稳定性。以下从多个维度系统解析该算法:
一、核心设计原理
1. BYTE数据关联策略
传统方法(如SORT/DeepSORT)仅使用高分检测框(如score>0.5)进行匹配,而ByteTrack提出两阶段关联:
-
第一阶段:用高分检测框(阈值τ_high)与预测轨迹匹配(基于IoU或运动模型)。
-
第二阶段:将剩余的低分检测框(阈值τ_low≤score<τ_high)与未匹配的轨迹二次关联,恢复被遮挡目标。
数学表达:
对于检测框集合