ByteTrack目标追踪算法详解

ByteTrack(Byte-based Association for Multi-Object Tracking)是一种基于检测的在线多目标跟踪(MOT)算法,由字节跳动团队于2021年提出。其核心创新在于充分利用检测框的所有置信度分数(包括低分检测框)进行数据关联,显著提升了复杂场景(如遮挡、模糊)下的跟踪稳定性。以下从多个维度系统解析该算法:

一、核心设计原理

1. BYTE数据关联策略

传统方法(如SORT/DeepSORT)仅使用高分检测框(如score>0.5)进行匹配,而ByteTrack提出两阶段关联

  • 第一阶段:用高分检测框(阈值τ_high)与预测轨迹匹配(基于IoU或运动模型)。

  • 第二阶段:将剩余的低分检测框(阈值τ_low≤score<τ_high)与未匹配的轨迹二次关联,恢复被遮挡目标。

数学表达

对于检测框集合 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

reset2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值