DeepLabv3+ 是由 Google Research 提出的先进 语义分割(Semantic Segmentation) 深度学习模型,是 DeepLabv3 的升级版。它通过引入改进的解码器(Decoder) 模块,显著提升了物体边界的分割精度,同时保持了多尺度上下文信息提取的能力。
1. 核心架构
DeepLabv3+ 采用 编码器-解码器(Encoder-Decoder) 结构:
-
编码器(Encoder):基于 DeepLabv3,使用 空洞空间金字塔池化(ASPP, Atrous Spatial Pyramid Pooling) 来捕捉多尺度特征。
-
解码器(Decoder):通过融合低层特征(如 CNN 浅层特征) 和高层语义信息,优化分割结果的细节,特别是物体边缘。
-
主干网络(Backbone):常用 ResNet-101、Xception 或 MobileNetV2(轻量化版本)。