csc(x)的积分

 \int csc(x)^{2}dx=-cot(x)+C

2次方的余割积分比较好求,正好是-cot(x),这个跟正割是类似的

但是单次的咋求呢?

\int csc(x)dx=?

需要做一个一般人不太想得到的操作

需要乘以 1=\frac{csc\, x-cot\, x}{csc\, x-cot\, x}

\int csc(x)dx=\int csc(x)*\frac{csc(x)-cot(x)}{csc(x)-cot(x)}dx

\int csc(x)*\frac{csc(x)-cot(x)}{csc(x)-cot(x)}dx=\int \frac{csc^{2}(x)-csc(x)cot(x)}{-cot(x)+csc(x)}dx

因为

{cot(x)}'=-csc(x)^{2}

{csc(x)}'=-csc(x)cot(x)

所以

\int \frac{csc^{2}(x)-csc(x)cot(x)}{-cot(x)+csc(x)}dx=\int \frac{1}{-cot(x)+csc(x)}dx(csc^{2}(x)-csc(x)cot(x))

=\int \frac{1}{-cot(x)+csc(x)}d(-cot(x)+csc(x))

-cot(x)+csc(x) 换元为 u

根据链式求导法则,有 d(u)=d(x){(u)}'

=\int \frac{1}{u}du

=ln |u|+C

将 u=-cot(x)+csc(x) 代入回去

= ln |csc(x)-cot(x)| +C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值