本篇文章适合个人复习翻阅,不建议新手入门使用
本文列举了计算不定积分的一些实用结论
定义
csc x = 1 sin x , sec x = 1 cos x , cot x = csc x sec x \csc{x}=\frac{1}{\sin{x}},\sec{x}=\frac{1}{\cos{x}},\cot{x}=\frac{\csc{x}}{\sec{x}} cscx=sinx1,secx=cosx1,cotx=secxcscx
sinh x = e x − e − x 2 , cosh x = e x + e − x 2 , tanh x = sinh x cosh x \sinh {x}=\frac{e^{x}-e^{-x}}{2},\cosh {x}=\frac{e^x+e^{-x}}{2},\tanh {x}=\frac{\sinh{x}}{\cosh{x}} sinhx=2ex−e−x,coshx=2ex+e−x,tanhx=coshxsinhx
反三角函数的常用结论
以下每组等式最后两个等号只在 x > 0 x>0 x>0 时成立
arcsin x = − arcsin ( − x ) = π 2 − arccos x = arctan x 1 − x 2 = arccos 1 − x 2 = arccot 1 − x 2 x \begin{split} \arcsin{x}&=-\arcsin{(-x)}\\ &=\frac{\pi}{2}-\arccos{x}\\ &=\arctan{\frac{x}{\sqrt{1-x^2}}}\\ &=\arccos{\sqrt{1-x^2}}\\ &=\operatorname{arccot}{\frac{\sqrt{1-x^2}}{x}}\\ \end{split} arcsinx=−arcsin(−x)=2π−arccosx=arctan1−x2x=arccos1−x2=arccotx1−x2
arccos x = π − arccos − x = π 2 − arcsin x = arccot x 1 − x 2 = arcsin 1 − x 2 = arctan 1 − x 2 x \begin{split} \arccos{x}&=\pi-\arccos{-x}\\ &=\frac{\pi}{2}-\arcsin{x}\\ &=\operatorname{arccot}{\frac{x}{\sqrt{1-x^2}}}\\ &=\arcsin{\sqrt{1-x^2}}\\ &=\arctan{\frac{\sqrt{1-x^2}}{x}}\\ \end{split} arccosx=π−arccos−x=2π−arcsinx=arccot1−x2x=arcsin1−x2=arctanx1−x2
arctan x = − arctan − x = π 2 − arccot x = arcsin x 1 + x 2 = arccos 1 1 + x 2 = arccot 1 x \begin{split} \arctan{x}&=-\arctan{-x}\\ &=\frac{\pi}{2}-\operatorname{arccot}{x}\\ &=\arcsin{\frac{x}{\sqrt{1+x^2}}}\\ &=\arccos{\frac{1}{\sqrt{1+x^2}}}\\ &=\operatorname{arccot}{\frac{1}{x}}\\ \end{split} arctanx