sklearn多元回归分析(线性回归,ransac)

今天主要学习的是多元回归分析.我个人的简单理解就是用

`y=ax1+bx2+cx3+...+β`

线性方程来拟合某个规律.一元的时候是最小二乘法,高中的知识.多元的时候也是,暂时还没研究具体的公式和感受公式的含义.只当是高中公式一样,单纯往里套(调用sklearn的API)
2017年数模国赛B

在这里插入图片描述
主要目标是用红框的三个因素来拟合任务标价.先上代码.

from sklearn.linear_model import LinearRegression
import openpyxl
import matplotlib.pyplot as plt 
# from mpl_toolkits import mplot3d
import numpy as np 
# import sklearn.linear_model
# ax = plt.axes(projection='3d')

excel = openpyxl.load_workbook('聚类3的数据.xlsx')
sheet = excel['Sheet2']

jiage = []
distance = []
mijidu = []
huiyuanmijidu=[]
finish = []
julei = []
for i in range(2,sheet.max_row):
    jiage.append(sheet.cell(row=i,column=4).value)
    distance.append(sheet.cell(row=i,column=7).value)
    mijidu.append(sheet.cell(row=i,column=8).value)
    huiyuanmijidu.append(sheet.cell(row=i,column=11).value)
    finish.append(sheet.cell(row=i,column=9).value)
    julei.append(sheet.cell(row=i,column=10).value)
X = []
y=[]
myfinish=[]
for i in range(len(jiage)):
    if (finish[i] == 0) or 1:
        # y.append([jiage[i]-6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rglkt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值