今天主要学习的是多元回归分析.我个人的简单理解就是用
`y=ax1+bx2+cx3+...+β`
线性方程来拟合某个规律.一元的时候是最小二乘法,高中的知识.多元的时候也是,暂时还没研究具体的公式和感受公式的含义.只当是高中公式一样,单纯往里套(调用sklearn的API)
2017年数模国赛B
主要目标是用红框的三个因素来拟合任务标价.先上代码.
from sklearn.linear_model import LinearRegression
import openpyxl
import matplotlib.pyplot as plt
# from mpl_toolkits import mplot3d
import numpy as np
# import sklearn.linear_model
# ax = plt.axes(projection='3d')
excel = openpyxl.load_workbook('聚类3的数据.xlsx')
sheet = excel['Sheet2']
jiage = []
distance = []
mijidu = []
huiyuanmijidu=[]
finish = []
julei = []
for i in range(2,sheet.max_row):
jiage.append(sheet.cell(row=i,column=4).value)
distance.append(sheet.cell(row=i,column=7).value)
mijidu.append(sheet.cell(row=i,column=8).value)
huiyuanmijidu.append(sheet.cell(row=i,column=11).value)
finish.append(sheet.cell(row=i,column=9).value)
julei.append(sheet.cell(row=i,column=10).value)
X = []
y=[]
myfinish=[]
for i in range(len(jiage)):
if (finish[i] == 0) or 1:
# y.append([jiage[i]-6