N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000) 第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6 -2 11 -4 13 -5 -2
Output示例
20
最大的和有两种情况:1、出现在1-n中 2、出现在2-n为首,n之后循环序列为尾的情况
第一个情况用一般O(n)求法。
第二个情况可以观察,发现他一定会包括数列后面的一段和前面的一段,因为这一段是超过n的不好求,那么就求中间的,他正好在1-
n中,写几个例子,可以发现这段数正是将序列每个数取负数然后求最大子段和,求出这段和之后用原序列的总和加上这段数。
然后取这两种情况的最大的一种,因为a[i]达到10e9,所以要用long long
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 50010
int a[N];
int main(){
int i,j,m,n;
cin>>n;
long long int sum=0;
for(i=1;i<=n;i++){
cin>>a[i];
sum+=a[i];
}
//cout<<sum<<endl;
long long int sum1=0,Max=0;
for(i=1;i<=n;i++){
sum1+=a[i];
if(sum1<0) sum1=0;
else if(sum1>=Max) Max=sum1;
}
//cout<<Max<<endl;
for(i=1;i<=n;i++) a[i]*=-1;
sum1=0;
long long int Max1=0;
for(i=1;i<=n;i++){
sum1+=a[i];
if(sum1<=0) sum1=0;
else if(sum1>=Max1) Max1=sum1;
}
//cout<<Max1<<endl;
Max=max(Max,sum+Max1);
cout<<Max<<endl;
return 0;
}