51nod 1050 循环数组最大子段和

N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6
-2
11
-4
13
-5
-2
Output示例
20
循环序列求子段最大和问题

最大的和有两种情况:1、出现在1-n中   2、出现在2-n为首,n之后循环序列为尾的情况

第一个情况用一般O(n)求法。

第二个情况可以观察,发现他一定会包括数列后面的一段和前面的一段,因为这一段是超过n的不好求,那么就求中间的,他正好在1-

n中,写几个例子,可以发现这段数正是将序列每个数取负数然后求最大子段和,求出这段和之后用原序列的总和加上这段数。

然后取这两种情况的最大的一种,因为a[i]达到10e9,所以要用long long

代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 50010
int a[N];
int main(){
    int i,j,m,n;
    cin>>n;
    long long int sum=0;
    for(i=1;i<=n;i++){
        cin>>a[i];
        sum+=a[i];
    }
    //cout<<sum<<endl;
    long long int sum1=0,Max=0;
    for(i=1;i<=n;i++){
        sum1+=a[i];
       if(sum1<0) sum1=0;
       else if(sum1>=Max) Max=sum1;
    }
    //cout<<Max<<endl;
    for(i=1;i<=n;i++) a[i]*=-1;
    sum1=0;
    long long int Max1=0;
    for(i=1;i<=n;i++){
        sum1+=a[i];
        if(sum1<=0) sum1=0;
        else if(sum1>=Max1) Max1=sum1;
    }
    //cout<<Max1<<endl;
    Max=max(Max,sum+Max1);
    cout<<Max<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值