【高中数学\基本不等式】已知a,b皆为正数,且2/(a+2)+1/(a+2b)=1,则a+b的最小值是多少,此时a等于几?

【问题】

已知a,b皆为正数,且2/(a+2)+1/(a+2b)=1,则a+b的最小值是多少,此时a等于几?

【来源】

《解题卡壳怎么办 高中数学解题智慧点剖析》P33 余继光 苏德矿合著 浙江大学出版社出版

【破题点】

展开2/(a+2)+1/(a+2b)=1应该对ab的关系有更直观的发现,另外题目问法暴露其核心可能是基本不等式。

【解答】

由2/(a+2)+1/(a+2b)=1得到2(a+2b)+a+2=(a+2)(a+2b)

展开化简后得到a+2=a^2+2ab

移项后得到b=1/2+1/a-a/2

于是a+b=0.5+1/a+a/2,此时图线是上移0.5个单位的对勾函数,基本不等式已经呼之欲出了,

故当1/a=a/2即a=根号2时,a+b取最小值1/2+根号2≈2.232

END

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值