The order of a Tree
题目:
As we know,the shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
- insert a key k to a empty tree, then the tree become a tree with
only one node; - insert a key k to a nonempty tree, if k is less than the root ,insert
it to the left sub-tree;else insert k to the right sub-tree.
We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate the same tree.Two trees are the same if and only if they have the same shape.
Input
There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
Output
One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
题意: 就是给你二叉树的输入顺序,要求输出二叉树的先序遍历。
代码有详解
#include<stdio.h>
#include<string.h>
#define N 100010
int a[N],t[N],l[N],r[N],k,m,n;
void insert(int x,int y)
{
//与根节点比较,看是在左还是在右
if(y<=t[x]) //小于等于根节点,入左
{
if(l[x])
insert(l[x],y); //x就是当前项根节点对应的编号,递归调用也就是比较t[l[x]]和y的大小,大于入右,小于归左
else
l[x]=k; //插入空位,这个插入的其实就是个编号,比较时调用t[l[x]],K起了连接关系
}
else
{ //大于当前项的根节点,往右
if(r[x])
insert(r[x],y); //同上
else
r[x]=k; //同上
}
}
void post(int x)//前序建树
{
a[m++]=t[x]; //将接点放到数组里
if(l[x]) //先左
post(l[x]);
if(r[x]) //后右
post(r[x]);
}
int main()
{
int i,x,root;
while(~scanf("%d",&n))
{
memset(l,0,sizeof l);
memset(r,0,sizeof r);
root=-1,k=0;m=0;
for(i=0; i<n; i++)
{
scanf("%d",&x);
if(root==-1) //root就代表了根节点,没别的意思,加完之后一直为0
t[++root]=x;
else
{
t[++k]=x; //X是连接纽带
insert(root,x);
}
}
post(root);//入数组
//输出注意格式
for(i=0; i<m-1; i++)
printf("%d ",a[i]);
printf("%d\n",a[m-1]);
}
return 0;
}
/*递归真是个好东西*/