大学物理华南农业大学专版(中)

电磁学


1. 电流与磁场

电流强度 I = d q d t I=\frac{dq}{dt} I=dtdq
电流密度 j = d I d S c o s a j=\frac{dI}{dS cos a} j=dScosadI

因此有: I = ∫ S j ⃗ d S ⃗ I=\int_S\vec{j}d\vec{S} I=Sj dS

电动势:单位正电荷绕闭合回路运动一周,非静电力所做的功。

非静电电场强度 E k ⃗ \vec{E_k} Ek

A = ∮ l q ( E k ⃗ l ⃗ ) A = \oint_lq(\vec{E_k}\vec{l}) A=lq(Ek l )

电动势 ε = A q \varepsilon = \frac{A}{q} ε=qA

电流方向相同时它们相互吸引;电流方向相反时则相互排斥。

F m a x F_{max} Fmax是磁场力

磁感应强度 B = F m a x q v B=\frac{F_{max}}{qv} B=qvFmax

运动电荷在磁场中受力:洛伦兹力

F ⃗ = q v B \vec{F} = qvB F =qvB

在这里插入图片描述
磁通量: ϕ m = ∫ S B d S \phi_m = \int_SBdS ϕm=SBdS

静电场和磁场的高斯定理对比:

  • ϕ m = ∮ S B d S = 0 \phi_m=\oint_SBdS=0 ϕm=SBdS=0
  • ϕ e = ∮ S E d S = ∑ q ε \phi_e = \oint_SEdS=\sum \frac{q}{\varepsilon} ϕe=SEdS=εq

磁场是无源场,穿过任意闭合曲面𝑆的总磁通必然为零,这就是磁场中的高斯定理

毕奥-萨伐尔定律
常量: μ 0 = 4 π ∗ 1 0 − 7 N ∗ A − 2 \mu_0=4\pi *10^{-7}N*A^{-2} μ0=4π107NA2 真空磁导率
在这里插入图片描述

d B = μ 0 4 π I d l s i n θ r 2 dB=\frac{\mu_0}{4\pi}\frac{Idlsin\theta}{r^2} dB=4πμ0r2Idlsinθ

解题步骤

  • 找到合适的电流元
  • 选择合适的坐标系
  • 写出电流元产生的磁感应强度
  • 计算磁感应强度的分布

磁矩 P m ⃗ = I S e n ⃗ \vec{P_m} = IS\vec{e_n} Pm =ISen


例题:长为𝐿的载流直导线,通有电流𝐼,确定与导线垂直距离为𝑎处的磁感强度。

在这里插入图片描述

:P点产生的磁场大小:

B = ∫ L d B = ∫ L μ 0 4 π I d l s i n θ r 2 B=\int_LdB=\int_L\frac{\mu_0}{4\pi}\frac{I dl sin\theta}{r^2} B=LdB=L4πμ0r2Idlsinθ
B = μ 0 I R 2 2 r 3 B=\frac{\mu_0IR^2}{2r^3} B=2r3μ0IR2


例题:圆形载流导线的磁场,即圆电流的磁场。求其轴线上一点𝑃的磁感强度的方向和大小

在这里插入图片描述

在这里插入图片描述
B = ∫ μ 0 4 π I d l r 2 c o s a B = \int \frac{\mu_0}{4\pi}\frac{Idl}{r^2}cosa B=4πμ0r2Idlcosa

c o s a = R r , r 2 = R 2 + x 2 cosa=\frac{R}{r},r^2=R^2+x^2 cosa=rRr2=R2+x2
B = ∫ μ 0 4 π I d l r 2 c o s a = μ 0 I R 2 2 r 3 B=\int \frac{\mu_0}{4\pi} \frac{Idl}{r^2}cosa=\frac{\mu_0IR^2}{2r^3} B=4πμ0r2Idlcosa=2r3μ0IR2


例题:如图的载流导线,求𝑂点的B?
在这里插入图片描述

以磁感线方向纸面朝外为正方向

这里有四段导线,都需要分别计算。

B = μ 0 I 4 r 2 − μ 0 I 4 r 1 + μ 0 I 4 π r 2 − μ 0 I 4 π r 1 B=\frac{\mu_0I}{4r_2}-\frac{\mu_0I}{4r_1}+\frac{\mu_0I}{4\pi r_2}-\frac{\mu_0I}{4\pi r_1} B=4r2μ0I4r1μ0I+4πr2μ0I4πr1μ0I

上面分别是:内外环和两根直导线


例题:如图所示为一个假象的球面,其中心有一个运动电荷,速度方向如图所示,则图中所标注的三个球面上的点,哪个点具有最大的磁场?

在这里插入图片描述

d B = μ 0 4 π I d l r 2 dB = \frac{\mu_0}{4\pi} \frac{Idl}{r^2} dB=4πμ0r2Idl

对于C: r = r s i n θ r = rsin\theta r=rsinθ
对于A: d A = 0 dA=0 dA=0
对于B: r = r r=r r=r


例题:真空中有一根无限长的导线,载有电流𝐼,则距离导线轴为𝑅处的磁场强度为?

B = μ 0 I 2 π R B=\frac{\mu_0 I}{2\pi R} B=2πRμ0I

例题:真空中半径为𝑅的载流圆线圈,通有电流𝐼,求其圆心处的磁场为?

B = μ 0 I 2 R B=\frac{\mu_0 I}{2R} B=2Rμ0I

例题:通有电流𝐼,半径为𝑅的半圆形载流导线在圆心处所 题 激发的磁场强度大小为?

B = μ 0 I 4 R B=\frac{\mu_0 I}{4R} B=4Rμ0I

例题:一无限长载流𝐼的导线,中部弯成如图所示的四分之一圆周𝐴𝐵,圆心为𝑂,半径为𝑅,则在𝑂点处的磁感应强度的大小为?
在这里插入图片描述
B = μ 0 I 4 π R ( 1 + π 2 ) B=\frac{\mu_0 I}{4\pi R}(1+\frac{\pi}{2}) B=4πRμ0I(1+2π)

例题:一长直载流𝐼的导线,中部折成图示一个半径为𝑅的圆,则圆心的磁感应强度大小为?
在这里插入图片描述
:0

例题:如图所示,真空中载有电流为𝐼的导线(实线部分为导线,𝐴、𝐵两端延伸到无穷远处),则在圆心𝑂处的磁感应强度为?
在这里插入图片描述
μ 0 I 4 π R + μ 0 I 4 R \frac{\mu_0 I}{4\pi R}+\frac{\mu_0 I}{4R} 4πRμ0I+4Rμ0I

例题::载流长直导线的电流强度为𝐼,求通过图示矩形面积𝑐𝑑𝑒𝑓的磁通量(𝑎、𝑏、𝑙均为已知)。
在这里插入图片描述
:载流长直导线产生的 B = μ I 2 π r B=\frac{\mu I}{2\pi r} B=2πrμI

ϕ m = ∫ S B d S = ∫ a b μ I 2 π r d r = μ I l 2 π l n b a \phi_m = \int_S BdS=\int_a^b\frac{\mu I}{2\pi r}dr = \frac{\mu I l}{2 \pi} ln\frac{b}{a} ϕm=SBdS=ab2πrμIdr=2πμIllnab


安培环路定理 ∮ L B ⃗ d l ⃗ = μ ∑ I 内 \oint_L\vec{B}d\vec{l}=\mu \sum I_内 LB dl =μI


例题:一个半径为𝑟的半球面如图放在均匀磁场中,通过半球面的磁通量为?

在这里插入图片描述

ϕ = π r 2 B c o s a \phi=\pi r^2 B cosa ϕ=πr2Bcosa

例题:如图所示,在无限长载流直导线附近作一球形闭合曲面𝑆,当曲面𝑆向长直导线靠近时,穿过曲面𝑆的磁通量𝜙和面上各点的磁感应强度𝐵将如何变化?
在这里插入图片描述
𝜙不变,𝐵增大


2. 磁场对电流的作用

一根载流导线在磁场中所受的安培力: F ⃗ = ∫ L I d l B \vec{F} = \int_L I dl B F =LIdlB

例题:在均匀磁场中放置一半径为𝑅的半圆形导线,电流强度为𝐼,导线两端连线与磁感强度方向夹角α = 30°,求此段圆弧电流受的磁力。
在这里插入图片描述

首先在电流上任取电流元 I d l Idl Idl

F = ∫ a b I d l B = I ∗ 2 R ∗ s i n a ∗ B = I B R F = \int_a^b Idl B = I *2R*sin a *B=IBR F=abIdlB=I2RsinaB=IBR

例题:在均匀磁场𝐵中,通过一半径为𝑅的半圆导线中的电流为𝐼,求该导线所受的安培力?

在这里插入图片描述

F = I B R ∫ 0 π s i n θ d θ = 2 I B R F = IBR \int_0^{\pi}sin \theta d \theta = 2IBR F=IBR0πsinθdθ=2IBR

合力F放行为y轴的正方向


例题:载流𝐼1的长直导线一侧,有另一导线水平放置,长为𝐿,通有电流𝐼2,两者在同一平面。求水平导线所受磁力大小和方向?
在这里插入图片描述

B = μ I 1 2 π x B = \frac{\mu I_1}{2\pi x} B=2πxμI1
F = ∫ d F = ∫ I 2 B d l = ∫ a a + L μ I 1 I 2 2 π x d x F = \int dF = \int I_2Bdl=\int_a^{a+L} \frac{\mu I_1 I_2}{2\pi x} dx F=dF=I2Bdl=aa+L2πxμI1I2dx


洛伦兹力:带电粒子在均匀磁场中运动所受的力

f ⃗ = q v ⃗ B ⃗ \vec{f } =q \vec{v} \vec{B} f =qv B

回旋加速器

在这里插入图片描述
q v 0 B = m v 0 2 R qv_0B = m\frac{v_0^2}{R} qv0B=mRv02

T = 2 π R v 0 T = \frac{2\pi R}{v_0} T=v02πR

常识:

  • 安培力和洛仑兹力本质上都是磁场对运动电荷的作用。
  • 磁场对带电粒子的作用力不可以增大粒子的动能
  • 洛伦兹力永不做功
  • 质谱仪可用于鉴别同位素
  • 可利用霍尔效应来测磁场

例题:两根长直导线𝑎、𝑏平行放置距离为𝑟,分别通有𝐼1、𝐼2的电流时,问导线上的安培力?

在这里插入图片描述
μ I 1 I 2 2 π r \frac{\mu I_1 I_2}{2 \pi r} 2πrμI1I2

例题:一带电粒子,垂直射入均匀磁场,如果粒子质量增大到2倍,入射速度增大到2倍,磁场的磁感应强度增大到4倍,则通过粒子运动轨道包围范围内的磁通量增大到原来的倍?

B q v = m v 2 R Bqv = m \frac{v^2}{R} Bqv=mRv2
ϕ = ∫ S B d S \phi=\int_S BdS ϕ=SBdS

4倍


例题:一带电粒子垂直射入磁场𝐵后,作周期为𝑇的匀速率圆周运动,若要使运动周期变为𝑇/2,磁感应强度应变为?

:2B


3. 电磁感应与电磁场

(磁生电)

法拉第电磁感应定律 ε = − k d ϕ m d t \varepsilon = - k \frac{d \phi_m}{dt} ε=kdtdϕm

负号表示感应电动势总是反抗磁通的变化

用楞次定律判断感生电流的方向:

  • 判断原磁通量 ϕ m \phi_m ϕm的变化,增加或者减少
  • 确定感生电流的磁场B的方向
  • 根据感生电流的方向

计算感生电动势的是很好,我们的k就不出现了。

和匝数有关: ε = − N d ϕ d t \varepsilon = - N \frac{d\phi}{dt} ε=Ndtdϕ


例题:如图是电子计算机内作为存储元件的环形磁芯,磁芯是用矩形磁滞回线的铁氧体材料制成的. 环形磁芯上绕有两个截面积均为𝑆 = 4.5 × 10−2𝑚𝑚−2的线圈𝑎1和𝑎2。当线圈𝑎1中有脉冲电流𝑖通过时,在Δ𝑡 = 0.45 × 10−6𝑠的时间内,磁芯内的磁感强度由+𝐵转为− 𝐵。设𝐵 = 0.17𝑇,线圈𝑎2的匝数𝑁 = 2。求磁芯内的磁感强度翻转过程中,线圈𝑎2中产生的感应电动势为多少?
在这里插入图片描述
已知: 𝑆 = 4.5 × 10−2𝑚𝑚−2,Δ𝑡 = 0.45 × 10−6𝑠,𝐵 = 0.17𝑇,𝑁 = 2

Δ Φ = 2 N B S \Delta \Phi = 2NBS ΔΦ=2NBS
ε = 2 N B S Δ t = 68 m V \varepsilon = \frac{2NBS}{\Delta t} = 68mV ε=Δt2NBS=68mV


动生电动势
ε = B l V \varepsilon = BlV ε=BlV

在这里插入图片描述
ε = ∫ a b ( V B ) d l \varepsilon = \int_a^b (V B)dl ε=ab(VB)dl

两种计算动生电动势的办法:

  • ε = ∫ L ( V B ) d l \varepsilon= \int_L(VB)dl ε=L(VB)dl
  • ε = − d ϕ m d t \varepsilon = -\frac{d\phi_m}{dt} ε=dtdϕm

例题:一长为𝐿的铜棒在磁感强度为𝐵的均匀磁场中,以角速度𝜔在与磁场方向垂直的平面上绕棒的一端转动,求铜棒两端的感应电动势?
在这里插入图片描述


ε = ∫ 0 L w l B d l = 1 2 B w L 2 \varepsilon=\int_0^L wlBdl=\frac{1}{2}BwL^2 ε=0LwlBdl=21BwL2


例题:一导线矩形框的平面与磁感强度为𝐵的均匀磁场相垂直。在此矩形框上,有一质量为𝑚长为𝑙的可移动的细导体棒𝑀𝑁;矩形框还接有一个电阻𝑅,其值较之导线的电阻值要大得很多。若开始时,细导体棒以速度𝑣0沿如图所示的矩形框运动,试求棒的速率随时间变化的函数关系

在这里插入图片描述

ϕ = B l v \phi = Blv ϕ=Blv

棒子所受的安培力: F = I B l = B 2 l 2 v R F = IBl=\frac{B^2l^2v}{R} F=IBl=RB2l2v

m d v d t = − B 2 l 2 v R m\frac{dv}{dt}=-\frac{B^2l^2v}{R} mdtdv=RB2l2v

∫ v 0 v d v v = − ∫ 0 t B 2 l 2 m R \int_{v_0}^v \frac{dv}{v} = -\int_0^t\frac{B^2l^2}{mR} v0vvdv=0tmRB2l2

v = v 0 e − ( B 2 l 2 / m R ) t v = v_0e^{-(B^2l^2/mR)t} v=v0e(B2l2/mR)t


热学

1. 气体分子运动理论

理想气体状态方程 P V = M M m R T PV = \frac{M}{M_m}RT PV=MmMRT

方均根速率 v ˉ 2 = 3 k T m \sqrt{\bar{v}^2}=\sqrt{\frac{3kT}{m}} vˉ2 =m3kT

分子无规律运动的激烈程度表示:
ε k ˉ = 3 2 k T = 1 2 m v 2 ˉ \bar{\varepsilon_k}=\frac{3}{2}kT=\frac{1}{2} m \bar{v^2} εkˉ=23kT=21mv2ˉ


例题:一定量的理想气体贮于某一容器中,温度为𝑇,气体分子质量为𝑚。根据理想气体分子的分子模型和统计假设,分子速率在𝑥方向分量的平方的平均值为?

ε k = 1 2 m v 2 = 3 2 k T \varepsilon_k = \frac{1}{2}mv^2 =\frac{3}{2}kT εk=21mv2=23kT

v x ˉ 2 = 1 3 v ˉ 2 \bar{v_x}^2=\frac{1}{3}\bar{v}^2 vxˉ2=31vˉ2

所以: v x 2 ˉ = k T / m \bar{v_x^2}=kT/m vx2ˉ=kT/m

例题:一瓶氦气𝐻𝑒和一瓶氮气𝑁2密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们?

(A)温度相同、压强相同。
(B)温度、压强都不同。
©温度相同,但氦气的压强大于氮气的压强。
(D)温度相同,但氦气的压强小于氮气的压强

ρ = m H e n H e = m N 2 n N 2 \rho=m_{H_e}n_{H_e}=m_{N_2}n_{N_2} ρ=mHenHe=mN2nN2

例题:(1)在一个具有活塞的容器中盛有一定的气体。如果压缩气体并对它加热,使它的温度从27℃升到177℃,体积减少一半,求气体压强变化多少?(2)这时气体分子的平均平动动能变化多少

(1) P 1 = n 1 k T 1 P_1=n_1kT_1 P1=n1kT1 P 2 = n 2 k T 2 P_2=n_2kT_2 P2=n2kT2
V 1 = 2 V 2 ⇒ 2 n 1 = n 2 V_1=2V_2\Rightarrow2n_1=n_2 V1=2V22n1=n2
T 1 = 273 + 27 = 300 K T_1=273+27=300K T1=273+27=300K
T 2 = 273 + 177 = 450 K T_2=273+177=450K T2=273+177=450K

P 2 P 1 = n 2 k T 2 n 1 k T 1 = 3 \frac{P_2}{P_1}=\frac{n_2kT_2}{n_1kT_1}=3 P1P2=n1kT1n2kT2=3

(2)
ε k = 3 2 k T \varepsilon_k =\frac{3}{2}kT εk=23kT
Δ ε k = 3 2 k ( T 1 − T 2 ) \Delta \varepsilon_k= \frac{3}{2}k(T_1-T_2) Δεk=23k(T1T2)


例题:若理想气体的体积为𝑉,压强为𝑃,温度为𝑇,一个分子的质量为𝑚,𝑘为玻耳兹曼常量,𝑅为摩尔气体常量,则该理想气体的分子数为?

P = n k T P=nkT P=nkT
P = N V k T P=\frac{N}{V}kT P=VNkT
N = P V k T N=\frac{PV}{kT} N=kTPV


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值