《TensorFlow技术解析与实战》附录A 公开数据集

本文介绍了多个公开数据集,适用于深度学习研究,包括ImageNet、COCO、CIFAR等图片数据集,AFLW、LFW等人脸数据集,YouTube-8M视频数据集,MS MARCO问答数据集,以及自动驾驶领域的KITTI数据集和年龄、性别识别的Adience数据集。这些数据集在计算机视觉、人脸识别、自然语言处理和自动驾驶等领域具有广泛的应用。
摘要由CSDN通过智能技术生成

为了方便读者进行更多实践,本附录给读者介绍一些可用的公开数据集。

ImageNet[1]是目前世界上最大的图像识别数据集,包含14197122张图像,由斯坦福大学视觉实验室终身教授李飞飞创立。每年的ImageNet大赛是国际上计算机视觉的顶级赛事。

COCO[2]是微软创立的用于分割和加字幕标注的数据集。其主要特征如下:

  • 目标分割;
  • 通过上下文进行识别;
  • 每个图像包含多个目标对象;
  • 超过300000个图像;
  • 超过2000000个实例;
  • 80种对象;
  • 每个图像包含5个字幕;
  • 包含100000个人的关键点。

CIFAR[3](Canada Institude For Advanced Research)是由加拿大先进技术研究院收集的8 000万小图片的数据集。CIFAR包含CIFAR-10和CIFAR-100两个数据集。Cifar-10由60 000张32×32的RGB彩色图片构成,共10个类别,50 000张训练,10 000张测试(交叉验证)。CIFAR-100由60

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人民邮电出版社有限公司

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值