绝对值线性化的两种方式

对于一个数学规划问题:

min ⁡ ∑ i = 1 n c i ∣ x i ∣ s . t . A x ≥ b \begin{aligned} &\min\quad &\sum_{i=1}^n c_i|x_i|\\ &s.t. &\bm {Ax\geq b} \end{aligned} mins.t.i=1ncixiAxb

有两种方法将其线性化,

  • 方法1:用一个中间变量 z i z_i zi,再增加两个约束条件

min ⁡ ∑ i = 1 n c i z i s . t . A x ≥ b x i ≤ z i ∀ i − x i ≤ z i ∀ i \begin{aligned} &\min\quad &\sum_{i=1}^n c_iz_i&\\ &s.t. &\bm {Ax\geq b}&\\ & &x_i\leq z_i &\quad\forall i\\ &&-x_i\leq z_i&\quad\forall i \end{aligned} mins.t.i=1nciziAxbxizixiziii

  • 方法2:用两个非负的中间变量 x i + x_i^+ xi+, x i − x_i^- xi 替换 x i x_i xi,即 x i = x i + − x i − x_i=x_i^+-x_i^- xi=xi+xi ∣ x i ∣ = x i + + x i − |x_i|=x_i^++x_i^- xi=xi++xi
    min ⁡ ∑ i = 1 n c i ( x i + + x i − ) s . t . A ( x + − x − ) ≥ b x + , x − ≥ 0 \begin{aligned} &\min\quad &\sum_{i=1}^n c_i(x_i^++x_i^-)\\ &s.t. &\bm{ A(x^+-x^-)\geq b}\\ && \bm x^+, \bm x^-\geq 0 \end{aligned} mins.t.i=1nci(xi++xi)A(x+x)bx+,x0

由于决策目标是最小化,这种方法自动保证 x i + x_i^+ xi+ x i − x_i^- xi 至少一个为零(否则总能减去或增加一定量使一方为零,而目标函数更小)。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值