Lipschitz 连续,绝对连续

1. Lipschitz 连续

经常听到这个名词, Lipschitz 连续比普通连续更强,不仅要求函数连续,还要求函数的梯度小于一个正实数。

在单变量实数函数上的定义可以是:

  • 对于定义域内任意两个 x 1 x_1 x1 and x 2 x_2 x2, 存在一个 K > 0 K>0 K>0, 满足

∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ K ∣ ( x 1 − x 2 ) ∣ |f(x_1)-f(x_2)|\leq K|(x_1-x_2)| f(x1)f(x2)K(x1x2)

对于多变量函数,要求在任何一个变量上的梯度都小于等于 K K K.

2. 绝对连续

除了 Lipschitz 连续,还有绝对连续(absolute continuous, 不仅要求一致连续,还要求函数勒贝格可积分),一致连续以及普通连续,这几个连续在集合上的包含关系是:

Lipschitz continuous ⊂ absolute continuous ⊂ uniform continuous ⊂ ordinary continuous \text{Lipschitz continuous}\subset\text{absolute continuous}\subset\text{uniform continuous}\subset\text{ordinary continuous} Lipschitz continuousabsolute continuousuniform continuousordinary continuous

绝对连续的定义:

  • 对于任意实数 ϵ > 0 \epsilon>0 ϵ>0 与定义域内任意不相交的子区间序列 ( x k , y k ) (x_k,y_k) (xk,yk),总存在实数 δ > 0 \delta>0 δ>0,当 ∑ k ∣ x − y ∣ < δ \sum _k|x-y|<\delta kxy<δ 时,都有 ∑ k ∣ f ( x ) − f ( y ) ∣ < ϵ \sum _k |f(x)-f(y)|<\epsilon kf(x)f(y)<ϵ.

一致连续但不是绝对连续的一个函数: x / sin ⁡ ( 1 / x ) x/\sin(1/x) x/sin(1/x),它的图像是:

在这里插入图片描述
这个函数可以在定义域内找到不相交的子区间,它们的长度和小于某个常数,但是在所有子区间的绝对偏差和可以达到无穷大 (令 x n = 1 2 n π + π / 2 , y n = 1 2 n π , n ≥ 1 x_n=\frac{1}{2n\pi+\pi/2}, y_n=\frac{1}{2n\pi}, n\geq 1 xn=2+π/21,yn=21,n1)。

该函数也不是勒贝格可积,因为:

∫ − ∞ ∞ ∣ x sin ⁡ ( 1 / x ) ∣ = ∞ \int_{-\infty}^{\infty}\left|\frac{x}{\sin(1/x)}\right|=\infty sin(1/x)x =

(对函数的绝对值求积分,不是无穷大,是存在勒贝格积分的条件)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值