对于两个随机变量 X X X, Y Y Y,若它们服从二维正态分布,则概率密度函数为:
f ( x , y ) = 1 2 π σ X σ Y 1 − ρ 2 exp ( − 1 2 ( 1 − ρ 2 ) [ ( x − μ X ) 2 σ X 2 + ( y − μ Y ) 2 σ Y 2 − 2 ρ ( x − μ X ) ( y − μ Y ) σ X σ Y ] ) f(x,y)=\frac{1}{2\pi \sigma_X\sigma_Y\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_X)^2}{\sigma_X^2}+\frac{(y-\mu_Y)^2}{\sigma_Y^2}-\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right]\right) f(x,y)=2πσXσY1−ρ21exp(−2(1−ρ2)1[σX2(x−μX)2+σY2(y−μY)2−σXσY2ρ(x−μX)(y−μY)])
其中两个随机变量的均值分别为 μ X \mu_X μX, μ Y \mu_Y μY,方差分别为 σ X \sigma_X σX, σ Y \sigma_Y σY。 ρ \rho ρ 为两个变量的相关系数,若 ρ = 0 \rho=0 ρ=0,则表示两个变量相互独立。
ρ = c o v ( X , Y ) σ X 2 σ Y 2 = E ( X Y ) − E ( X ) E ( Y ) σ X σ Y \rho=\frac{cov(X,Y)}{\sqrt{\sigma^2_X\sigma^2_Y}}=\frac{E(XY)-E(X)E(Y)}{{\sigma_X\sigma_Y}} ρ=σX2σY2cov(X,Y)=σXσYE(XY)−E(X)E(Y)
多元正态分布的表达式为:
f
(
x
1
,
x
2
,
…
,
x
k
)
=
1
(
2
π
)
k
∣
∑
∣
exp
(
−
1
2
(
X
−
μ
)
T
∑
−
1
(
x
−
μ
)
)
f(x_1,x_2, \dots, x_k)=\frac{1}{\sqrt{(2\pi)^k|\sum|}}\exp\left(-\frac{1}{2}(\bf X-\bf \boldsymbol{\mu})^T\sum\nolimits^{-1}(x-\boldsymbol{\mu)}\right)
f(x1,x2,…,xk)=(2π)k∣∑∣1exp(−21(X−μ)T∑−1(x−μ))
其中,
X
\bf X
X 为随机变量的向量表示,而
μ
\boldsymbol{\mu}
μ 为各个随机变量期望的向量表示。在二元情况下,
∑
\sum
∑ 的表达式为:
∑
=
(
σ
X
2
ρ
σ
X
σ
Y
ρ
σ
X
σ
Y
σ
Y
2
)
\sum=\left(\begin{matrix} \sigma_X^2 &\rho\sigma_X\sigma_Y\\ \rho\sigma_X\sigma_Y& \sigma_Y^2 \end{matrix} \right)
∑=(σX2ρσXσYρσXσYσY2)