可解释人工智能(XAI)领域的全面概述

        AI 模型,尤其是深度学习模型,由于其黑盒性质,在安全关键领域(如医疗保健、金融和自动驾驶汽车)中面临着重大挑战。用户无法理解模型的内部逻辑和决策过程,这导致了缺乏信任、透明度和问责制。XAI 通过提供模型决策和预测的解释来解决这些挑战。它确保 AI 模型的透明度、问责制和公平性,从而为用户、监管机构和公众建立信任。

      本文提供一份关于 XAI 的全面综述,涵盖常见的术语和定义、XAI 的需求、XAI 的受益者、XAI 方法分类以及 XAI 方法在不同应用领域的应用。

1 XAI的需求

  • 透明度: XAI 解释了模型是如何做出决策的,这增加了用户对模型的信任和理解。透明度对于建立用户对 AI 系统的信任至关重要。
  • 治理和合规: XAI 使开发者能够解释模型的决策过程,并确保它们符合道德和法律标准。这对于确保 AI 系统符合法律和伦理标准至关重要。
  • 模型性能和调试: XAI 有助于识别模型中的偏差和错误,并提高模型的准确性和可靠性。这对于开发高性能和可靠的 AI 模型至关重要。
  • 可靠性: XAI 提供了一种机制,可以验证 AI 模型的预测和决策,并确保它们是可靠的。这对于确保 AI 系统的可靠性至关重要。
  • 安全性: XAI 有助于确保 AI 系统的安全性,特别是在安全关键应用中。这对于确保 AI 系统的安全性至关重要。
  • 人机协作: XAI 使人类能够理解 AI 行为背后的推理,从而促进人机协作。这对于实现人机协作至关重要。

2 XAI的受益者

  • 社会: XAI 有助于减少 AI 系统的负面影响,例如不道德的使用、歧视和偏见,从而提高社会对 AI 的接受度。
  • 政府: XAI 有助于开发透明、问责制和可解释的公共政策决策,例如公共安全和资源分配。
  • 行业: XAI 有助于提供透明、可解释、问责制和可信的服务和决策过程,并帮助识别和减少错误和偏差。
  • 研究人员和系统开发人员: XAI 为研究人员和 AI 系统开发人员提供了关键见解,有助于改进模型性能,并帮助开发更准确和可靠的模型。

3 XAI的分类

可解释性技术 (XAI) 旨在解释机器学习模型做出预测或决策的原因,以确保其透明度、可问责性和公平性。它们可以分为不同的类别,主要基于以下几个方面:

3.1 解释范围

  • 局部解释 (Local Explanation): 解释特定实例或输入对模型的预测或决策的影响。例如,LIME 和 SHAP 通过对输入数据进行扰动来分析单个样本对模型输出的影响。
  • 全局解释 (Global Explanation): 提供对模型整体行为的概述或完整描述。例如,特征重要性分析和模型无关解释方法可以提供对模型整体决策过程的见解。

3.2 解释阶段

  • 先验解释 (Ante-hoc Explanation): 在模型训练和开发阶段进行,旨在提高模型的透明度和可理解性。例如,决策树和贝叶斯网络通过其结构本身即可解释。
  • 后验解释 (Post-hoc Explanation): 在模型训练和部署后进行,旨在向模型用户解释模型的预测或决策过程。例如,LIME、SHAP 和反事实解释通过分析模型输出的变化来解释模型的行为。

3.3 解释方法

  • 模型无关解释 (Model-Agnostic Explanation): 可以应用于所有类型的机器学习模型,无需了解模型内部结构和设计。例如,LIME 和 SHAP 可以用于解释各种类型的模型,包括神经网络、决策树和随机森林。
  • 模型相关解释 (Model-Specific Explanation): 基于特定模型的内部工作结构和设计进行解释。例如,神经网络的模型相关解释可以提供有关网络结构、权重分配和激活神经元的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值