转自:
http://blog.sina.com.cn/s/blog_6c17a3a00100o4xx.html
Γ函数
维基百科,自由的百科全书
汉漢
▼
函数,也叫做伽玛函数(Gamma函数),是阶乘函数在实数与复数上的扩展。对于实数部份为正的复数z,伽玛函数定义为:
如果n为正整数,则伽玛函数定义为:
- Γ(n) = (n − 1)!,
这显示了它与阶乘函数的联系。可见,伽玛函数将n拓展到了实数与复数域上。
定义
函数可以通过欧拉(Euler)第二类积分定义:
对复数,我们要求Re(z) > 0。
Γ函数还可以通过对做泰勒展开,解析延拓到整个复平面:
这样定义的Γ函数在全平面除了以外的地方解析。
Γ函数也可以用无穷乘积的方式表示:
这样定义的Γ函数在全平面解析
无穷乘积
函数可以用无穷乘积表示:
其中是欧拉-马歇罗尼常数。
Gamma积分
递推公式
函数的递推公式为: Γ(x + 1) = xΓ(x),
对于正整数,有
Γ(n + 1) = n!,
可以说函数是阶乘的推广。
递推公式的推导
我们用分部积分法来计算这个积分:
当时,。当趋于无穷大时,根据洛必达法则,有:
.
因此第一项变成了零,所以:
等式的右面正好是。因此,递推公式为:
- 。