在当今竞争激烈的市场中,提供卓越的客户服务至关重要。呼叫中心作为客户互动的前线,在塑造客户体验方面发挥着关键作用。优化呼叫中心路由,即将客户与最合适的座席匹配,不仅能提高客户满意度,还能推动业务成果,如增加转化率和客户忠诚度。有趣的是,这个优化问题与在线平台使用的推荐系统有显著的相似性。通过将呼叫路由重新表述为推荐问题,我们可以利用先进的机器学习技术,如双塔神经网络,大幅提高路由效率。
传统呼叫调度的挑战
传统的呼叫中心路由通常依赖简单规则或基本的细分:
- 基于技能的调度:根据预定义的技能(如语言、技术专长)将客户与座席匹配。
- 优先级调度:高价值客户被导向专门的座席或更快的队列。
- 轮询或闲置座席调度:均匀分配来电或路由到下一个可用座席。
虽然这些方法简单明了,但可能无法考虑导致成功结果的细微互动,如销售转化或高客户满意度评分。
从调度到推荐
可以将每个来电想象为用户访问一个网站,而可用座席池则是要推荐的内容项。目标从仅仅连接下一个可用座席转变为在客户和座席之间找到最佳匹配,从而实现期望的结果,如:
- 转化率
- 客户满意度评分
- 一次性解决率
通过将呼叫路由建模为推荐问题,我们可以利用复杂的算法预测每位客户的最佳座席。
理解客户和座席的嵌入
现代推荐系统的核心概念是嵌入——一种捕捉实体(用户和项目)特征的密集向量表示。
客户嵌入
客户嵌入编码的信息包括:
- 人口统计(年龄、位置)
- 互动历史(过去的来电、购买记录)
- 行为模式(通话频率、首选渠道)
座席嵌入
座席嵌入捕捉的属性包括:
- 专业领域
- 绩效指标(转化率、客户反馈)
- 沟通风格
通过在共享向量空间中表示客户和座席,我们可以测量它们之间的相似性或兼容性。
双塔推荐系统
双塔(或双重塔)模型是一种常用于推荐系统的架构,特别适合匹配问题。
架构概览
- 用户塔:处理客户特征以生成客户嵌入。
- 项目塔:处理座席特征以生成座席嵌入。
- 互动:来自两个塔的嵌入结合(如通过点积)以预测成功互动的可能性。
模型训练
模型训练基于历史互动数据:
- 正例:过去成功的客户-座席互动。
- 负例:不太成功或中性的互动。
损失函数的目标是最大化实际成功互动的预测成功度量,同时对其他互动进行最小化处理。
部署
在运行时:
- 客户嵌入生成:当来电进来时,客户的嵌入实时计算。
- 座席嵌入检索:从预先计算的数据库中检索可用座席的嵌入。
- 匹配:系统计算兼容性分数并将呼叫路由到最佳匹配的座席。
推荐方法的优势
- 个性化:根据细致的客户和座席画像定制互动。
- 可扩展性:高效处理大量客户和座席。
- 数据驱动:随着更多互动数据的可用而持续改进。
- 结果优化:直接针对业务指标如转化率进行优化。
挑战及考虑事项
- 数据质量:需要广泛且准确的历史互动数据。
- 冷启动问题:难以建模新客户或数据较少的座席。
- 实时约束:必须快速生成嵌入并计算匹配以避免延迟。
- 公平性与偏见:确保模型不会无意中偏袒或歧视某些客户或座席。
- 隐私顾虑:负责任地处理敏感客户数据,遵守GDPR等法规。
结论
将呼叫中心路由优化转变为推荐问题提供了一种增强客户座席匹配的强大框架。利用嵌入和双塔神经网络等技术,企业可以显著提升关键绩效指标,并提供更个性化的客户体验。与任何机器学习应用一样,必须解决数据质量和伦理考虑等挑战,以确保解决方案的有效性和责任性。
英文链接
AI好书推荐
AI日新月异,再不学来不及了。但是万丈高楼拔地起,离不开良好的基础。您是否有兴趣了解人工智能的原理和实践? 不要再观望! 我们关于 AI 原则和实践的书是任何想要深入了解 AI 世界的人的完美资源。 由该领域的领先专家撰写,这本综合指南涵盖了从机器学习的基础知识到构建智能系统的高级技术的所有内容。 无论您是初学者还是经验丰富的 AI 从业者,本书都能满足您的需求。 那为什么还要等呢?