矩特征主要表征了圖像區域的幾何特征,又稱為幾何矩, 由於其具有旋轉、平移、尺度等特性的不變特征,所以又稱其為不變矩。在圖像處理中,幾何不變矩可以作為一個重要的特征來表示物體,可以據此特征來對圖像進行分類等操作。如果想詳細了解不變矩的概念、公式等請參考下面的論文:
不變矩方法研究
一種實用的不變矩計算方法
http://download.csdn.net/source/1943495
1. HU矩
幾何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,圖像f(x,y)的(p+q)階幾何矩定義為
Mpq =∫∫(x^p)*(y^q)f(x,y)dxdy(p,q = 0,1,……∞)
矩在統計學中被用來反映隨機變量的分布情況,推廣到力學中,它被用作刻畫空間物體的質量分布。同樣的道理,如果我們將圖像的灰度值看作是一個二維或三維的密度分布函數,那麼矩方法即可用於圖像分析領域並用作圖像特征的提取。最常用的,物體的零階矩表示了圖像的「質量」:
Moo= ∫∫f(x,y )dxdy
一階矩(M01,M10)用於確定圖像質心( Xc,Yc):
Xc = M10/M00;Yc = M01/M00;
若將坐標原點移至 Xc和 Yc處,就得到了對於圖像位移不變的中心矩。如
Upq =∫∫[(x-Xc)^p]*[(y-Yc)^q]f(x,y)dxdy。
Hu在文中提出了7個幾何矩的不變量,這些不變量滿足於圖像平移、伸縮和旋轉不變。如果定義
Zpq=Upq/(U20 + U02)^(p+q+2),
Hu 的7種矩為:
H1=Z20+Z02;H1=(Z20+Z02)^2+4Z11^2;......
矩是描述圖像特征的算子,它在模式識別與圖像分析領域中有重要的應用.迄今為止,常見的矩描述子可以分為以下幾種:幾何矩、正交矩、復數矩和旋轉矩.其中幾何矩提出的時間最早且形式簡單,對它的研究最為充分。幾何矩對簡單圖像有一定的描述能力,他雖然在區分度上不如其他三種矩,但與其他幾種算子比較起來,他極其的簡單,一般只需用一個數字就可表達。所以,一般我們是用來做大粒度的區分,用來過濾顯然不相關的文檔。
比如在圖形庫中,可能有100萬幅圖,也許只有200幅圖是我們想要的。使用一維的幾何矩的話,就可以對幾何矩進行排序,建立索引,然後選出與目標圖的幾何矩最近的2000幅圖作比較就好了。而對於其他的矩來說,由於一般是多維的關系,一般不好排序,只能順序查找,自然速度有巨大的差別.所以。雖然幾何矩不太能選出最像的,但可以快速排除不像的,提高搜索效率。
幾種簡單的幾何矩:
令平面上點坐標為P(x,y),重心為C(x!,y!),
二階行距:rowMoment = [Σ(x- x!)*(x- x!)]/A
二階列距:colMoment = [Σ(y- y!)*(y- y!)]/A
A為點的個數。
由以上兩個信息可以算出圖形的圓度:circleDisgree = rowMoment /colMoment .如果圖形的circleDisgree 越小於1,則它越趨向於長軸為y方向的橢圓。如果圖形的circleDisgree 越大於1,則它越趨向於長軸為x方向的橢圓.如果圖形的circleDisgree 越接近於1,則它越趨向於圓。
所以我們可以使用圓度這種幾何矩,對其進行索引,實現快速過濾。
//代碼實例
double* Getsquare(int **Array1,int Width,int Height//Array1圖像灰度矩陣
{
int x,y;
double pSum,dx,dy;
int xmax,xmin,ymax,ymin,xSum,ySum,PointSum;
double dd,n1,n2,xAve,yAve;
pSum=Height*Width;
xSum=0;ySum=0;PointSum=0;
xmin=10000;ymin=10000;xmax=-1;ymax=-1;
for (y=0 ;y<Height; y++)
{
for (x=0; x<Width; x++)
{
if (Array1[x][y]==255)
{
continue;
}
xSum=xSum+x;ySum=ySum+y;++PointSum;
if (x<xmin)
{
xmin=x;
}
if (x>xmax)
{
xmax=x;
}
}
if (y<ymin)
{
ymin=y;
}
if (y>ymax)
{
ymax=y;
}
}
if (pSum==0)
{
goto Loop;
}
xAve=xSum/pSum;
yAve=ySum/pSum;
///上面為計算x,y平均值
for (x=1; x<16; x++)
{
SqureNumber[x]=0;
}
// 11 20 02 21+ 21- 12+ 12- 30+ 30- 03+ 02-
for (y=0; y<Height; y++)
{
for (x=0; x<Width; x++)
{
if (Array1[x][y]==255)
{
continue;
}
dx=x-xAve;dy=y-yAve;
SqureNumber[1]=SqureNumber[1]+dx*dx; // 計算 u(11) 11
SqureNumber[2]=SqureNumber[2]+dx*dx; // 計算 u(20) 20
SqureNumber[3]=SqureNumber[3]+dy*dy; // 計算 u(02) 02
if (dy>0)
{
SqureNumber[4]=SqureNumber[4]+dx*dx*dy; // 計算 u(21)+ 21+
}
else
{
SqureNumber[5]=SqureNumber[5]+dx*dx*dy; // 計算 u(21)- 21-
}
if( dx>0 )
{
SqureNumber[6]=SqureNumber[6]+dx*dy*dy; // 計算 u(12)+ 12+
}
else
{
SqureNumber[7]=SqureNumber[7]+dx*dy*dy; // 計算 u(12}- 12-
}
if (dx>0 )
{
SqureNumber[8]=SqureNumber[8]+dx*dx*dx ;// 計算 u(30)+ 30+
}
else
{
SqureNumber[9]=SqureNumber[9]+dx*dx*dx; // 計算 u(30)- 30-
}
if (dy>0)
{
SqureNumber[10]=SqureNumber[10]+dy*dy*dy ;// 計算 u(03)+ 03+
}
else
{
SqureNumber[11]=SqureNumber[11]+dy*dy*dy;// 計算 u(03)- 03-
}
}//end for x
}// end for y;
for (x=1; x<12; x++)
{
SqureNumber[x]=SqureNumber[x]/pSum;
}
///計算圖像的各階矩
for (x=12; x<21; x++)
{
SqureNumber[x]=0;
}
SqureNumber[12]=((SqureNumber[2]-SqureNumber[3])/(SqureNumber[2]+SqureNumber[3]))/2; //長寬比特征
dd=sqrt((SqureNumber[2]-SqureNumber[3])*(SqureNumber[2]-SqureNumber[3])+4*SqureNumber[1]*SqureNumber[1]);
dd=dd+(SqureNumber[2]-SqureNumber[3]);
SqureNumber[16]=2*atan(dd/(2*SqureNumber[1]))/M_PI; ///字型傾斜度
dd=sqrt((SqureNumber[2]-SqureNumber[3])*(SqureNumber[2]-SqureNumber[3])+4*SqureNumber[1]*SqureNumber[1]);
n1=((SqureNumber[2]+SqureNumber[3])+dd)/2;
n2=((SqureNumber[2]+SqureNumber[3])-dd)/2;
SqureNumber[14]=(n1-n2)/(n1+n2); //拉長度
n1=sqrt((ymax-ymin)*(xmax-xmin));
dd=sqrt((SqureNumber[2]+SqureNumber[3])/PointSum);
SqureNumber[15]=dd/n1; //伸展度
dd=(SqureNumber[8]-SqureNumber[9])/(SqureNumber[8]+SqureNumber[9]);
SqureNumber[16]=(dd+1)/2; //水平偏移度
dd=(SqureNumber[10]-SqureNumber[11])/(SqureNumber[10]+SqureNumber[11]);
SqureNumber[17]=(dd+1)/2; //垂直偏移度
dd=(SqureNumber[4]-SqureNumber[5])/(SqureNumber[4]+SqureNumber[5]);
SqureNumber[18]=(dd+1)/2; //水平伸展度度
dd=(SqureNumber[6]-SqureNumber[7])/(SqureNumber[6]+SqureNumber[7]);
SqureNumber[19]=(dd+1)/2; //垂直伸展度
Loop:;
}
2.Zernike矩
在模式識別中,一個重要的問題是對目標的方向性變化也能進行識別。Zernike 矩是一組正交矩,具有旋轉不變性的特性,即旋轉目標並不改變其模值。。由於Zernike 矩可以構造任意高階矩,所以Zernike 矩的識別效果優於其他方法.
Zernike 提出了一組多項式{ V nm ( x , y) } 。這組多項式在單位圓{ x2 + y2 ≦1} 內是正交的,具有如下形式: V nm ( x , y) = V nm (ρ,θ) = Rnm (ρ) exp ( jmθ) ,並且滿足 ∫∫ x^2+y^2 <= 1 [( V nm ( x , y) 的共軛]* V pq ( x , y) d x d y. = [pi/(n+1)]*δnpδmq .
if(a==b) δab = 1 else δab = 0,n 表示正整數或是0;m是正整數或是負整數它表示滿足m的絕對值<=n 而且n-m的絕對值是偶數這兩個條件;ρ 表示原點到象素(x,y)的向量的距離;θ 表示向量ρ 跟x 軸之間的夾角(逆時針方向).
對於一幅數字圖象,積分用求和代替,即A nm =ΣxΣy f(x,y) *[( V nm (ρ,θ) 的共軛],x^2+y^2 <=1
實際計算一幅給定圖象的Zernike 矩時,必須將圖象的重心移到坐標圓點,將圖象象素點映射到單位圓內。由以上可知,使[ V nm (ρ,θ) 的共軛]可提取圖象的特征,低頻特性由n 值小的[( V nm (ρ,θ) 的共軛]來提取,高頻特性由n 值大的來提取。Zernike 矩可以任意構造高價矩, 而高階矩包含更多的圖象信息, 所以Zernike 矩識別效果更好。,Zernike 矩僅僅具有相位的移動。
它的模值保持不變。所以可以將| A nm | 作為目標的旋轉不變性特征。因為| A nm | =| A n , - m | ,所以只需計算m ≧0 的情況。