http://www.cnblogs.com/doucontorl/archive/2010/12/04/1896667.html
和傅立葉變換算法對應的是反傅立葉變換算法。該反變換從本質上說也是一種累加處理,這樣就可以將單獨改變的正弦波信號轉換成一個信號。
因此,可以說,傅立葉變換將原來難以處理的時域信號轉換成了易於分析的頻域信號(信號的頻譜),可以利用一些工具對這些頻域信號進行處理、加工。最後還可以利用傅立葉反變換將這些頻域信號轉換成時域信號。
從現代數學的眼光來看,傅裡葉變換是一種特殊的積分變換。它能將滿足一定條件的某個函數表示成正弦基函數的線性組合或者積分。在不同的研究領域,傅裡葉變換具有多種不同的變體形式,如連續傅裡葉變換和離散傅裡葉變換。
在數學領域,盡管最初傅立葉分析是作為熱過程的解析分析的工具,但是其思想方法仍然具有典型的還原論和分析主義的特征。"任意"的函數通過一定的分解,都能夠表示為正弦函數的線性組合的形式,而正弦函數在物理上是被充分研究而相對簡單的函數類:1. 傅立葉變換是線性算子,若賦予適當的范數,它還是酉算子;2. 傅立葉變換的逆變換容易求出,而且形式與正變換非常類似;3. 正弦基函數是微分運算的本征函數,從而使得線性微分方程的求解可以轉化為常系數的代數方程的求解.在線性時不變雜的卷積運算為簡單的乘積運算,從而提供了計算卷積的一種簡單手段;5. 離散形式的傅立葉的物理系統內,頻率是個不變的性質,從而系統對於復雜激勵的響應可以通過組合其對不同頻率正弦信號的響應來獲取;4. 著名的卷積定理指出:傅立葉變換可以化復變換可以利用數字計算機快速的算出(其算法稱為快速傅立葉變換算法(FFT))。
正是由於上述的良好性質,傅裡葉變換在物理學、數論、組合數學、信號處理、概率、統計、密碼學、聲學、光學等領域都有著廣泛的應用。
2、圖像傅立葉變換的物理意義
圖像的頻率是表征圖像中灰度變化劇烈程度的指標,是灰度在平面空間上的梯度。如:大面積的沙漠在圖像中是一片灰度變化緩慢的區域,對應的頻率值很低;而對於地表屬性變換劇烈的邊緣區域在圖像中是一片灰度變化劇烈的區域,對應的頻率值較高。傅立葉變換在實際中有非常明顯的物理意義,設f是一個能量有限的模擬信號,則其傅立葉變換就表示f的譜。從純粹的數學意義上看,傅立葉變換是將一個函數轉換為一系列周期函數來處理的。從物理效果看,傅立葉變換是將圖像從空間域轉換到頻率域,其逆變換是將圖像從頻率域轉換到空間域。換句話說,傅立葉變換的物理意義是將圖像的灰度分布函數變換為圖像的頻率分布函數,傅立葉逆變換是將圖像的頻率分布函數變換為灰度分布函數
傅立葉變換以前,圖像(未壓縮的位圖)是由對在連續空間(現實空間)上的采樣得到一系列點的集合,我們習慣用一個二維矩陣表示空間上各點,則圖像可由z=f(x,y)來表示。由於空間是三維的,圖像是二維的,因此空間中物體在另一個維度上的關系就由梯度來表示,這樣我們可以通過觀察圖像得知物體在三維空間中的對應關系。為什麼要提梯度?因為實際上對圖像進行二維傅立葉變換得到頻譜圖,就是圖像梯度的分布圖,當然頻譜圖上的各點與圖像上各點並不存在一一對應的關系,即使在不移頻的情況下也是沒有。傅立葉頻譜圖上我們看到的明暗不一的亮點,實際上圖像上某一點與鄰域點差異的強弱,即梯度的大小,也即該點的頻率的大小(可以這麼理解,圖像中的低頻部分指低梯度的點,高頻部分相反)。一般來講,梯度大則該點的亮度強,否則該點亮度弱。這樣通過觀察傅立葉變換後的頻譜圖,也叫功率圖,我們首先就可以看出,圖像的能量分布,如果頻譜圖中暗的點數更多,那麼實際圖像是比較柔和的(因為各點與鄰域差異都不大,梯度相對較小),反之,如果頻譜圖中亮的點數多,那麼實際圖像一定是尖銳的,邊界分明且邊界兩邊像素差異較大的。對頻譜移頻到原點以後,可以看出圖像的頻率分布是以原點為圓心,對稱分布的。將頻譜移頻到圓心除了可以清晰地看出圖像頻率分布以外,還有一個好處,它可以分離出有周期性規律的干擾信號,比如正弦干擾,一副帶有正弦干擾,移頻到原點的頻譜圖上可以看出除了中心以外還存在以某一點為中心,對稱分布的亮點集合,這個集合就是干擾噪音產生的,這時可以很直觀的通過在該位置放置帶阻濾波器消除干擾
另外我還想說明以下幾點:
1、圖像經過二維傅立葉變換後,其變換系數矩陣表明:
若變換矩陣Fn原點設在中心,其頻譜能量集中分布在變換系數短陣的中心附近(圖中陰影區)。若所用的二維傅立葉變換矩陣Fn的原點設在左上角,那麼圖像信號能量將集中在系數矩陣的四個角上。這是由二維傅立葉變換本身性質決定的。同時也表明一股圖像能量集中低頻區域。
2 、變換之後的圖像在原點平移之前四角是低頻,最亮,平移之後中間部分是低頻,最亮,亮度大說明低頻的能量大(幅角比較大)
傅裡葉變換意義另解:
傅裡葉變換是一種解決問題的方法,一種工具,一種看待問題的角度。
理解的關鍵是:一個連續的信號可以看作是一個個小信號的疊加,從時域疊加與從頻域疊加都可以組成原來的信號,將信號這麼分解後有助於處理。
我們原來對一個信號其實是從時間的角度去理解的,不知不覺中,其實是按照時間把信號進行分割,每一部分只是一個時間點對應一個信號值,一個信號是一組這樣的分量的疊加。傅裡葉變換後,其實還是個疊加問題,只不過是從頻率的角度去疊加,只不過每個小信號是一個時間域上覆蓋整個區間的信號,但他確有固定的周期,或者說,給了一個周期,我們就能畫出一個整個區間上的分信號,那麼給定一組周期值(或頻率值),我們就可以畫出其對應的曲線,就像給出時域上每一點的信號值一樣,不過如果信號是周期的話
,頻域的更簡單,只需要幾個甚至一個就可以了,時域則需要整個時間軸上每一點都映射出一個函數值。
傅裡葉變換就是將一個信號的時域表示形式映射到一個頻域表示形式;逆傅裡葉變換恰好相反。這都是一個信號的不同表示形式。它的公式會用就可以,當然把證明看懂了更好。
對一個信號做傅立葉變換,可以得到其頻域特性,包括幅度和相位兩個方面。幅度是表示這個頻率分量的大小,那麼相位呢,它有什麼物理意義?頻域的相位與時域的相位有關系嗎?信號前一段的相位(頻域)與後一段的相位的變化是否與信號的頻率成正比關系?
傅立葉變換就是把一個信號,分解成無數的正弦波(或者余弦波)信號。也就是說,用無數的正弦波,可以合成任何你所需要的信號。
想一想這個問題,給你很多正弦信號,你怎樣才能合成你需要的信號呢。
答案是要兩個條件,一個是每個正弦波的幅度,另一個就是每個正弦波之間的相位差。
所以現在應該明白了吧,頻域上的相位,就是每個正弦波之間的相位。
傅立葉變換用於信號的頻率域分析,一般我們把電信號描述成時間域的數學模型,而數字信號處理對信號的頻率特性更感興趣,而通過傅立葉變換很容易得到信號的頻率域特性。
傅裡葉變換簡單通俗理解就是把看似雜亂無章的信號考慮成由一定振幅、相位、頻率的基本正弦(余弦)信號組合而成,傅裡葉變換的目的就是找出這些基本正弦(余弦)信號中振幅較大(能量較高)信號對應的頻率,從而找出雜亂無章的信號中的主要振動頻率特點。
如減速機故障時,通過傅裡葉變換做頻譜分析,根據各級齒輪轉速、齒數與雜音頻譜中振幅大的對比,可以快速判斷哪級齒輪損傷。