如何选择深网? 我们必须决定是否构建分类器,或者如果试图找到数据中的模式,以及我们是否要使用无监督学习。 为了从一组未标记的数据中提取模式,使用受限制的波尔兹曼机器或自动编码器。
在选择深层网络时考虑以下几点 -
- 对于文本处理,情感分析,解析和名称实体识别,我们使用循环网络或递归神经张量网络或RNTN;
- 对于在字符级别运行的任何语言模型,可使用递归网络。
- 对于图像识别,可使用深层信念网络DBN或卷积网络。
- 对于物体识别,可使用RNTN或卷积网络。
- 对于语音识别,可使用递归网络。
一般来说,具有整型线性单位或RELU的深层信念网络和多层感知器都是分类的好选择。
对于时间序列分析,总是建议使用经常性网络。