随机事件及其概率(一):

一,事件的关系和运算

  1. 事件的和(并): 事件A 与事件B 中至少有一个事件发生,这个事件称为事件A与B 的和事件,记做 :
    例如一件事,它发生有两种方案,就可以并起来,因为他们之和是发生这件事的总概率
    在这里插入图片描述

  2. 事件的积(交): 事件A和事件B同时发生,即事件A发生且B事件发生,则称为事件A与B的积(交)事件,记做:

    在这里插入图片描述

  3. 互斥事件:若A与B事件不可能同时发生则叫做事件A与事件B互斥(是互不相干独立关系)
    如:A为吃放,B为打游戏,互不相干的事件
    在这里插入图片描述

  4. 对立事件:事件A与B至少发生一个,它们不可能同时发生,称为对立事件,(是竞争独立关系)
    记作:
    在这里插入图片描述
    在这里插入图片描述
    (互斥不一定对立,对立一定互斥)大可记作:
    在这里插入图片描述

二,概率的重要性质

  • 性质1:p(空集)=0
  • 性质2:有限可加性,对任意有限个互斥事件A1,A2………An,有:

在这里插入图片描述

  • 性质3:

    在这里插入图片描述

  • 性质4:若A 属于B,则:

    在这里插入图片描述

  • 性质5:

    在这里插入图片描述

  • 常用3个事件之和的概率公式:

    在这里插入图片描述

三,古典概型

组合型:
在这里插入图片描述
(意思是从n 中取m 个的概率)
计算过程:
在这里插入图片描述
例如:口袋装有4个黑球,3个白球,任取3个求,求
(1)其中恰好有一个黑球的概率;
(2)其中至少有2个黑球的概率
解(1):
在这里插入图片描述
解(2):
在这里插入图片描述

四,条件概率

公式一:意思是求,在A条件发生下B发生的概率

在这里插入图片描述
例:设有两个口袋。第一个口袋装有:3黑2白球,第二个口袋装有:2黑4白球;
从第一口袋任取一球放到第二个口袋中,再从第二口袋任取一球,
求已知从第一个口袋取出的是白球,第二个口袋取出的是白球的概率?即求p(B|A)

:设
A={第一个口袋取出的是白球}
B={第二个口袋取出的是白球}
在这里插入图片描述

公式二:乘法公式

在这里插入图片描述
乘法公式可以推到n个事件:
在这里插入图片描述

例:有某光学仪器厂制造的透镜

第一次落下未打破的概率是1/2;
第一次未打破,第二打破的概率是7/10;
前两次都未打破,第三次打破的概率9 /10;(因第三次未打破,关系到前两次未打破,不能单纯的认为1-9/10就是答案)
求透镜落下三次未打破的概率?
解:分别设前三次打破分别为,A1,A2,A3;
B 为第三次未打破的概率(关系到前两次)

在这里插入图片描述

公式三:相互独立的充分必要条件

(一):双事件
在这里插入图片描述
相互独立:即当A事件对B事件的发生没有任何关系和影响,反过来B对A一样,则称事件A与B相互独立
小例:5黑2白球,任取一个且放回,重复两次,第一次拿到白球对第二次拿到白球的概率没任何影响,反之也是;
(二):多事件
当任意n=3个事件,满足前三个条件,则叫:两两独立
满足全部条件叫:相互独立
在这里插入图片描述
例:有3张分别为红黄蓝的卡纸,和一张有这三种颜色的卡纸;
A表示抽出的是红卡纸事件,B表示黄,C表示蓝
考察A,B,C的独立性?
解:
在这里插入图片描述
所以A,B,C事件是两两独立,不是相互独立
(三):
定理:设事件A,B相互独立,则A与B的对立事件(打不出那符号简称B对),A对与B对,A对与B也是相互独立

公式四:伯努利概型

理解:该类型适用于把相互独立概率经过重复试验上升到为一件具体事件的概率
设一次实验中,事件A发生的概率p(0<p<1),则在 n次重复试验下,A事件发生了k次的概率为
在这里插入图片描述
例:假设导弹命中目标的概率为0.6 , 问:以99%的把握几种目标至少配备多少枚导?
解设:
B事件={击中目标}
配备 n枚导弹
有k 枚击中(即B事件发生了k次);
在这里插入图片描述
结果待续

五,全概率事件于贝叶斯

(一):全概率
适用于部分概率,到整合一体求概率的问题即,一个复杂事件的概率计算问题,可以化为在不同情况或不同原因下发生的简单事件ed概率的求和问题,全概率公式可以用来解决这类问题。
在这里插入图片描述

:某村麦种放在甲乙丙三个仓库保管,其占比分别为40% , 35%,25%,所保管麦种发芽率分别为
0.95 , 0.92 ,0.90,现将其混合问其发芽率?
![在这里插入图片描述](https://img-blog.csdnimg.cn/2019081214382825.png
解设:
A1 事件为甲,A2为乙,A3 为丙,事件B表示发芽麦种
在这里插入图片描述
(二):贝叶斯
已知某时间已经发生(一般为全概率的事件),要考察引发改事件的各种原因或者情况的可能性大小,贝叶斯可以解决这类问题;
与全概率区别就是,贝叶斯是从大事件追溯到小事件,而全概率更像是小事件追溯到大事件
公式:
在这里插入图片描述

:市面上有某种产品是由甲乙丙三个厂商生产的,他们市场占有率分别为45%,35%,20%
次品率分别为:4%,2%,5%
先从市场买来一产品,发现是次品,则问该次品来自甲厂的概率是多少?
在这里插入图片描述
可见在算这个概率时,我们必须先算出次品的概率即全概率,接下才能追溯到甲的概率上来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值