一、样本空间
随机试验的每一个可能结果称为样本点,记为
w
w
w。样本点的全体组成的集合称为样本空间
,记为
Ω
\Omega
Ω,即
Ω
=
{
w
}
\Omega = \{ w \}
Ω={w}。由一个样本点构成的事件称为基本事件。随机事件
A
A
A总是由若干个基本事件组成,即
A
A
A是
Ω
\Omega
Ω的子集。
二、事件的关系与运算
-
事件A与B相等: A = B A=B A=B。
-
事件A包含于B: A ⊂ B A \subset B A⊂B。
-
事件A与B同时发生(A与B的积): A B AB AB 或 A ∩ B A \cap B A∩B。
-
事件A与B至少一个发生(A与B的和): A ∪ B A \cup B A∪B。
-
事件A与B相容: A B ≠ ∅ AB \ne \emptyset AB=∅。
-
事件A与B互斥(不相容): A B = ∅ AB = \emptyset AB=∅。
-
事件A的对立事件(逆事件): A ˉ \bar A Aˉ。
-
事件A发生而事件B不发生(A与B的差): A − B = A − A B = A B ˉ A-B=A-AB=A \bar B A−B=A−AB=ABˉ。
-
完备事件组:有限个事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,⋅⋅⋅,An,
⋃ i = 1 n A i = Ω , A i A j = ∅ ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) \bigcup^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n) i=1⋃nAi=Ω, AiAj=∅ (i=j;i,j=1,2,⋅⋅⋅,n) -
对偶律(德·摩根律): A ∪ B ‾ = A ‾ ∩ B ‾ , A ∩ B ‾ = A ‾ ∪ B ‾ \overline {A \cup B} = \overline A \cap \overline B,\quad \overline {A \cap B} = \overline A \cup \overline B A∪B=A∩B,A∩B=A∪B。
三、概率的性质
- 有界性:对于任一事件 A A A,有 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0≤P(A)≤1,且 P ( ∅ ) = 0 , P ( Ω ) = 0 P(\emptyset)=0,P(\Omega)=0 P(∅)=0,P(Ω)=0(但不能认为概率为0的集合为空集 或 概率为1的集合为全集,例如几何概型)。
- 单调性:设 A , B A,B A,B是两个事件,若 A ⊂ B A \subset B A⊂B,则 P ( B − A ) = P ( B ) − P ( A ) , P ( B ) ≥ P ( A ) P(B-A) = P(B) - P(A),\ P(B) \ge P(A) P(B−A)=P(B)−P(A), P(B)≥P(A)。
四、概率的公式
- 逆事件概率公式:对于任一事件 A A A,有 P ( A ‾ ) = 1 − P ( A ) P(\overline A) = 1- P(A) P(A)=1−P(A)。
- 加法公式:对于任意两个事件 A , B A,B A,B,有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A)+P(B)-P(AB) P(A∪B)=P(A)+P(B)−P(AB)。
- 减法公式: A − B = A − A B = A B ˉ A-B=A-AB=A \bar B A−B=A−AB=ABˉ。
- 条件概率公式:若 P ( A ) > 0 P(A)>0 P(A)>0,称在已知事件 A A A发生的条件下,事件 B B B发生的概率为条件概率,记为 P ( B ∣ A ) P(B|A) P(B∣A)。且 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {P(AB)} {P(A)} P(B∣A)=P(A)P(AB)。
- 乘法公式:如果 P ( A ) > 0 P(A)>0 P(A)>0,则 P ( A B ) = P ( A ) P ( B ∣ A ) P(AB) = P(A)P(B|A) P(AB)=P(A)P(B∣A)。
全概率公式
:如果 ⋃ i = 1 n A i = Ω , A i A j = ∅ ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) , P ( A i ) > 0 \bigcup\limits^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n),P(A_i)>0 i=1⋃nAi=Ω, AiAj=∅ (i=j;i,j=1,2,⋅⋅⋅,n),P(Ai)>0
则对任一事件 B B B,有:
B = ⋃ i = 1 n A i B , P ( B ) = ∑ i = 1 n P ( A ) P ( B ∣ A i ) B = \bigcup ^n _{i=1} A_iB, \quad P(B) = \sum ^n _{i=1} P(A)P(B|A_i) B=i=1⋃nAiB,P(B)=i=1∑nP(A)P(B∣Ai)贝叶斯公式
:如果 ⋃ i = 1 n A i = Ω , A i A j = ∅ ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) , P ( A i ) > 0 \bigcup\limits^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n),P(A_i)>0 i=1⋃nAi=Ω, AiAj=∅ (i=j;i,j=1,2,⋅⋅⋅,n),P(Ai)>0
则对任一事件 B B B,只要 P ( B ) > 0 P(B)>0 P(B)>0,就有:
P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) ( j = 1 , 2 , ⋅ ⋅ ⋅ , n ) P(A_j|B) = \frac {P(A_j)P(B|A_j)} {\sum\limits ^{n}_{i=1} P(A_i)P(B|A_i)} \ (j=1,2,···,n) P(Aj∣B)=i=1∑nP(Ai)P(B∣Ai)P(Aj)P(B∣Aj) (j=1,2,⋅⋅⋅,n)
五、一个有趣的例子
1.全概率公式的应用
例:有三个男生(小王、小马、小吴)和一个女神。三个男生追女神的概率都为 1 3 \frac 1 3 31,但不会彼此竞争。他们的能力不同,小王追女生的成功率为 0 0 0,小马追女生的成功率为 1 2 \frac 1 2 21,小吴追女生的成功率为 1 1 1。求女神脱单的概率。
解:设女神脱单为事件B,小王追女神为事件 A 1 A_1 A1,小马追女神为事件 A 2 A_2 A2,小吴追女神为事件 A 3 A_3 A3。
P
(
B
)
=
P
(
A
1
)
P
(
B
∣
A
1
)
+
P
(
A
2
)
P
(
B
∣
A
2
)
+
P
(
A
3
)
P
(
B
∣
A
3
)
=
1
3
×
0
+
1
3
×
1
2
+
1
3
×
1
=
1
2
\begin{aligned} P(B) &= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3) \\\\ &= \frac 1 3 \times 0 + \frac 1 3 \times \frac 1 2 + \frac 1 3 \times 1 \\\\ &= \frac 1 2 \end{aligned}
P(B)=P(A1)P(B∣A1)+P(A2)P(B∣A2)+P(A3)P(B∣A3)=31×0+31×21+31×1=21
故 女神脱单的概率为
1
2
\frac 1 2
21。
2.贝叶斯公式的应用
例:有三个男生(小王、小马、小吴)和一个女神。三个男生追女神的概率都为 1 3 \frac 1 3 31,但不会彼此竞争。他们的能力不同,小王追女生的成功率为 0 0 0,小马追女生的成功率为 1 2 \frac 1 2 21,小吴追女生的成功率为 1 1 1。现已知女神脱单,求男朋友分别为小王、小马、小吴的概率。
解:设女神脱单为事件B,小王追女神为事件 A 1 A_1 A1,小马追女神为事件 A 2 A_2 A2,小吴追女神为事件 A 3 A_3 A3。
P
(
A
1
∣
B
)
=
P
(
A
1
)
P
(
B
∣
A
1
)
∑
i
=
1
3
P
(
A
i
)
P
(
B
∣
A
i
)
=
1
3
×
0
1
2
=
0
\begin{aligned} P(A_1|B) &= \frac {P(A_1)P(B|A_1)} {\sum\limits ^{3}_{i=1} P(A_i)P(B|A_i)} \\\\ &= \frac {\frac 1 3 \times 0} {\frac 1 2} \\\\ &= 0 \end{aligned}
P(A1∣B)=i=1∑3P(Ai)P(B∣Ai)P(A1)P(B∣A1)=2131×0=0
故男朋友为小王的概率为0。以此类推,求得男朋友为小马的概率为
1
3
\frac 1 3
31,为小吴的概率为
2
3
\frac 2 3
32。
3. 小结
全概率公式用于由因导果。贝叶斯公式用于由果索因。
六、事件独立性
如果各个试验结果是相互独立的,则称这些试验是相互独立的。例如,对试验 E 1 E_1 E1的任一结果 A 1 A_1 A1,试验 E 2 E_2 E2的任一结果 A 2 A_2 A2,事件 A 1 A_1 A1与 A 2 A_2 A2相互独立,即 P ( A 1 A 2 ) = P ( A 1 ) P ( A 2 ) P(A_1A_2)=P(A_1)P(A_2) P(A1A2)=P(A1)P(A2),称随机试验 E 1 E_1 E1和 E 2 E_2 E2是相互独立的。