概率论笔记—随机事件与概率

一、样本空间

随机试验的每一个可能结果称为样本点,记为 w w w。样本点的全体组成的集合称为样本空间,记为 Ω \Omega Ω,即 Ω = { w } \Omega = \{ w \} Ω={w}。由一个样本点构成的事件称为基本事件。随机事件 A A A总是由若干个基本事件组成,即 A A A Ω \Omega Ω的子集。

二、事件的关系与运算

  1. 事件A与B相等: A = B A=B A=B

  2. 事件A包含于B: A ⊂ B A \subset B AB

  3. 事件A与B同时发生(A与B的积): A B AB AB A ∩ B A \cap B AB

  4. 事件A与B至少一个发生(A与B的和): A ∪ B A \cup B AB

  5. 事件A与B相容: A B ≠ ∅ AB \ne \emptyset AB=

  6. 事件A与B互斥(不相容): A B = ∅ AB = \emptyset AB=

  7. 事件A的对立事件(逆事件): A ˉ \bar A Aˉ

  8. 事件A发生而事件B不发生(A与B的差): A − B = A − A B = A B ˉ A-B=A-AB=A \bar B AB=AAB=ABˉ

  9. 完备事件组:有限个事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_1,A_2,···,A_n A1,A2,,An
    ⋃ i = 1 n A i = Ω ,   A i A j = ∅   ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) \bigcup^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n) i=1nAi=Ω AiAj= i=j;i,j=1,2,,n

  10. 对偶律(德·摩根律): A ∪ B ‾ = A ‾ ∩ B ‾ , A ∩ B ‾ = A ‾ ∪ B ‾ \overline {A \cup B} = \overline A \cap \overline B,\quad \overline {A \cap B} = \overline A \cup \overline B AB=AB,AB=AB

三、概率的性质

  1. 有界性:对于任一事件 A A A,有 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0P(A)1,且 P ( ∅ ) = 0 , P ( Ω ) = 0 P(\emptyset)=0,P(\Omega)=0 P()=0P(Ω)=0(但不能认为概率为0的集合为空集 或 概率为1的集合为全集,例如几何概型)。
  2. 单调性:设 A , B A,B A,B是两个事件,若 A ⊂ B A \subset B AB,则 P ( B − A ) = P ( B ) − P ( A ) ,   P ( B ) ≥ P ( A ) P(B-A) = P(B) - P(A),\ P(B) \ge P(A) P(BA)=P(B)P(A), P(B)P(A)

四、概率的公式

  1. 逆事件概率公式:对于任一事件 A A A,有 P ( A ‾ ) = 1 − P ( A ) P(\overline A) = 1- P(A) P(A)=1P(A)
  2. 加法公式:对于任意两个事件 A , B A,B A,B,有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
  3. 减法公式: A − B = A − A B = A B ˉ A-B=A-AB=A \bar B AB=AAB=ABˉ
  4. 条件概率公式:若 P ( A ) > 0 P(A)>0 P(A)>0,称在已知事件 A A A发生的条件下,事件 B B B发生的概率为条件概率,记为 P ( B ∣ A ) P(B|A) P(BA)。且 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac {P(AB)} {P(A)} P(BA)=P(A)P(AB)
  5. 乘法公式:如果 P ( A ) > 0 P(A)>0 P(A)>0,则 P ( A B ) = P ( A ) P ( B ∣ A ) P(AB) = P(A)P(B|A) P(AB)=P(A)P(BA)
  6. 全概率公式:如果 ⋃ i = 1 n A i = Ω ,   A i A j = ∅   ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) , P ( A i ) > 0 \bigcup\limits^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n),P(A_i)>0 i=1nAi=Ω AiAj= i=j;i,j=1,2,,n,P(Ai)>0
    则对任一事件 B B B,有:
    B = ⋃ i = 1 n A i B , P ( B ) = ∑ i = 1 n P ( A ) P ( B ∣ A i ) B = \bigcup ^n _{i=1} A_iB, \quad P(B) = \sum ^n _{i=1} P(A)P(B|A_i) B=i=1nAiB,P(B)=i=1nP(A)P(BAi)
  7. 贝叶斯公式:如果 ⋃ i = 1 n A i = Ω ,   A i A j = ∅   ( i ≠ j ; i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) , P ( A i ) > 0 \bigcup\limits^{n}_{i=1} A_i = \Omega, \ A_i A_j=\emptyset \ (i \neq j; i,j = 1,2,···,n),P(A_i)>0 i=1nAi=Ω AiAj= i=j;i,j=1,2,,n,P(Ai)>0
    则对任一事件 B B B,只要 P ( B ) > 0 P(B)>0 P(B)>0,就有:
    P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i )   ( j = 1 , 2 , ⋅ ⋅ ⋅ , n ) P(A_j|B) = \frac {P(A_j)P(B|A_j)} {\sum\limits ^{n}_{i=1} P(A_i)P(B|A_i)} \ (j=1,2,···,n) P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj) (j=1,2,,n)

五、一个有趣的例子

1.全概率公式的应用

例:有三个男生(小王、小马、小吴)和一个女神。三个男生追女神的概率都为 1 3 \frac 1 3 31,但不会彼此竞争。他们的能力不同,小王追女生的成功率为 0 0 0,小马追女生的成功率为 1 2 \frac 1 2 21,小吴追女生的成功率为 1 1 1。求女神脱单的概率。

解:设女神脱单为事件B,小王追女神为事件 A 1 A_1 A1,小马追女神为事件 A 2 A_2 A2,小吴追女神为事件 A 3 A_3 A3

P ( B ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + P ( A 3 ) P ( B ∣ A 3 ) = 1 3 × 0 + 1 3 × 1 2 + 1 3 × 1 = 1 2 \begin{aligned} P(B) &= P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + P(A_3)P(B|A_3) \\\\ &= \frac 1 3 \times 0 + \frac 1 3 \times \frac 1 2 + \frac 1 3 \times 1 \\\\ &= \frac 1 2 \end{aligned} P(B)=P(A1)P(BA1)+P(A2)P(BA2)+P(A3)P(BA3)=31×0+31×21+31×1=21
故 女神脱单的概率为 1 2 \frac 1 2 21

2.贝叶斯公式的应用

例:有三个男生(小王、小马、小吴)和一个女神。三个男生追女神的概率都为 1 3 \frac 1 3 31,但不会彼此竞争。他们的能力不同,小王追女生的成功率为 0 0 0,小马追女生的成功率为 1 2 \frac 1 2 21,小吴追女生的成功率为 1 1 1。现已知女神脱单,求男朋友分别为小王、小马、小吴的概率。

解:设女神脱单为事件B,小王追女神为事件 A 1 A_1 A1,小马追女神为事件 A 2 A_2 A2,小吴追女神为事件 A 3 A_3 A3

P ( A 1 ∣ B ) = P ( A 1 ) P ( B ∣ A 1 ) ∑ i = 1 3 P ( A i ) P ( B ∣ A i ) = 1 3 × 0 1 2 = 0 \begin{aligned} P(A_1|B) &= \frac {P(A_1)P(B|A_1)} {\sum\limits ^{3}_{i=1} P(A_i)P(B|A_i)} \\\\ &= \frac {\frac 1 3 \times 0} {\frac 1 2} \\\\ &= 0 \end{aligned} P(A1B)=i=13P(Ai)P(BAi)P(A1)P(BA1)=2131×0=0
故男朋友为小王的概率为0。以此类推,求得男朋友为小马的概率为 1 3 \frac 1 3 31,为小吴的概率为 2 3 \frac 2 3 32

3. 小结

全概率公式用于由因导果。贝叶斯公式用于由果索因。

六、事件独立性

如果各个试验结果是相互独立的,则称这些试验是相互独立的。例如,对试验 E 1 E_1 E1的任一结果 A 1 A_1 A1,试验 E 2 E_2 E2的任一结果 A 2 A_2 A2,事件 A 1 A_1 A1 A 2 A_2 A2相互独立,即 P ( A 1 A 2 ) = P ( A 1 ) P ( A 2 ) P(A_1A_2)=P(A_1)P(A_2) P(A1A2)=P(A1)P(A2),称随机试验 E 1 E_1 E1 E 2 E_2 E2是相互独立的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ta o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值