复变函数论:二、解析函数
1. 复变函数的可微与可导
复变函数微分和求导
复变函数微分定义:设函数
w
=
f
(
z
)
w=f(z)
w=f(z) 定义在点
z
0
z_0
z0的某领域
U
(
z
0
)
U(z_0)
U(z0) 内。当给
z
0
z_0
z0 一个增量
Δ
z
,
z
0
+
Δ
z
∈
U
(
z
0
)
\Delta z,\ z_0+\Delta z\in U(z_0)
Δz, z0+Δz∈U(z0) 时,相应地得到函数的增量为:
Δ
w
=
f
(
z
0
+
Δ
z
)
−
f
(
z
0
)
=
Δ
u
+
i
Δ
v
\Delta w = f(z_0 + \Delta z) - f(z_0) = \Delta u + i\Delta v
Δw=f(z0+Δz)−f(z0)=Δu+iΔv
如果存在常数
A
A
A ,使得
Δ
w
\Delta w
Δw能表示成:
Δ
w
=
A
Δ
z
+
∘
(
Δ
z
)
\Delta w = A\Delta z + \circ(\Delta z)
Δw=AΔz+∘(Δz)
则称函数$ f$ 在点
z
0
z_0
z0可微。并称上式中
Δ
z
\Delta z
Δz 为
f
f
f在点
z
0
z_0
z0的微分,记作:
d
z
∣
z
=
z
0
=
A
Δ
z
dz|_{z=z_0} = A\Delta z
dz∣z=z0=AΔz
由定义可见,函数的微分与增量仅相差一个关于
Δ
z
\Delta z
Δz 的高阶无穷小量,由于
d
z
dz
dz是
Δ
z
\Delta z
Δz的线性函数,所以当
A
≠
0
A\neq 0
A=0 时,也说微分$dz $是增量
Δ
z
\Delta z
Δz 的线性主部。
复变函数导数定义:设
w
=
f
(
z
)
w=f(z)
w=f(z) 在区域
D
D
D 内有定义,
z
0
∈
D
z_0\in D
z0∈D ,记
Δ
z
=
z
−
z
0
=
Δ
x
+
i
Δ
y
,
Δ
w
=
f
(
z
)
−
f
(
z
0
)
=
f
(
z
0
+
Δ
z
)
−
f
(
z
0
)
=
Δ
u
+
i
Δ
v
\Delta z = z-z_0 = \Delta x + i\Delta y,\\ \Delta w = f(z)-f(z_0) = f(z_0+\Delta z)-f(z_0) = \Delta u + i\Delta v
Δz=z−z0=Δx+iΔy,Δw=f(z)−f(z0)=f(z0+Δz)−f(z0)=Δu+iΔv
如果
lim
Δ
z
→
0
Δ
w
Δ
z
=
lim
z
→
z
0
f
(
z
)
−
f
(
z
0
)
z
−
z
0
=
A
\lim_{\Delta z\to 0}\frac{\Delta w}{\Delta z} = \lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0} = A
Δz→0limΔzΔw=z→z0limz−z0f(z)−f(z0)=A
存在,则称
f
(
z
)
f(z)
f(z)在
z
0
z_0
z0 可导,
A
A
A称为
f
(
z
)
f(z)
f(z)在
z
0
z_0
z0的导数,记为
A
=
f
′
(
z
0
)
A=f^{\prime}(z_0)
A=f′(z0) 。
复变函数自变量的增量 Δ z \Delta z Δz 可沿任意方向逼近于 0,和二元函数的偏导数的定义类似,我们可以考察沿平行于实轴和虚轴方向逼近于 0。
平行于实轴方向逼近于 0:这时 Δ y ≡ 0 \Delta y \equiv 0 Δy≡0 ,而 Δ z = Δ x → 0 \Delta z = \Delta x \to 0 Δz=Δx→0 于是:
lim Δ x → 0 u ( x + Δ x , y ) + i v ( x + Δ x , y ) − u ( x , y ) − i v ( x , y ) Δ x = lim Δ x → 0 { u ( x + Δ x , y ) − u ( x , y ) Δ x + i v ( x + Δ x , y ) − v ( x , y ) Δ x } = ∂ u ∂ x + i ∂ v ∂ x \begin{array}{l} &\quad \lim_{\Delta x\to0}\frac{u(x+\Delta x,y)+iv(x+\Delta x,y)-u(x,y)-iv(x,y)}{\Delta x}\\ &=\lim_{\Delta x\to0}\{\frac{u(x+\Delta x,y)-u(x,y)}{\Delta x}+i\frac{v(x+\Delta x,y)-v(x,y)}{\Delta x}\}\\ &=\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} \end{array} limΔx→0Δxu(x+Δx,y)+iv(x+Δx,y)−u(x,y)−iv(x,y)=limΔx→0{Δxu(x+Δx,y)−u(x,y)+iΔxv(x+Δx,y)−v(x,y)}=∂x∂u+i∂x∂v
平行于虚轴方向逼近于 0:这时 Δ x ≡ 0 \Delta x \equiv 0 Δx≡0 ,而 Δ z = i Δ y → 0 \Delta z = i\Delta y \to 0 Δz=iΔy→0 于是:
lim
Δ
x
→
0
u
(
x
,
y
+
Δ
y
)
+
i
v
(
x
,
y
+
Δ
y
)
−
u
(
x
,
y
)
−
i
v
(
x
,
y
)
Δ
y
=
lim
Δ
x
→
0
{
v
(
x
,
y
+
Δ
y
)
−
v
(
x
,
y
)
Δ
y
−
i
u
(
x
,
y
+
Δ
y
)
−
u
(
x
,
y
)
Δ
y
}
=
∂
v
∂
y
−
i
∂
u
∂
y
\begin{array}{l} &\quad \lim_{\Delta x\to0}\frac{u(x,y+\Delta y)+iv(x,y+\Delta y)-u(x,y)-iv(x,y)}{\Delta y}\\ &=\lim_{\Delta x\to0}\{\frac{v(x,y+\Delta y)-v(x,y)}{\Delta y}-i\frac{u(x,y+\Delta y)-u(x,y)}{\Delta y}\}\\ &=\frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} \end{array}
limΔx→0Δyu(x,y+Δy)+iv(x,y+Δy)−u(x,y)−iv(x,y)=limΔx→0{Δyv(x,y+Δy)−v(x,y)−iΔyu(x,y+Δy)−u(x,y)}=∂y∂v−i∂y∂u
那么根据二元函数可微的必要条件,上面两个极限应该存在,对于复变函数再加一条,这两个极限相等,那么有:
∂
u
∂
x
+
i
∂
v
∂
x
=
∂
v
∂
y
−
i
∂
u
∂
y
\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y}
∂x∂u+i∂x∂v=∂y∂v−i∂y∂u
这个方程就是是柯西-黎曼方程,或称为柯西-黎曼条件。
柯西-黎曼方程
柯西-黎曼(Cauchy-Riemann)方程:如果函数$f(z)
在点
在点
在点 z $可导,那么上面两个极限存在且相等,即:
∂
u
∂
x
+
i
∂
v
∂
x
=
∂
v
∂
y
−
i
∂
u
∂
y
\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y}
∂x∂u+i∂x∂v=∂y∂v−i∂y∂u
这个等式两边的实部和虚部必须分别相等,即
{
∂
u
∂
x
=
∂
v
∂
y
∂
v
∂
x
=
−
∂
u
∂
y
\left\{\begin{array}{l} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \end{array}\right.
{∂x∂u=∂y∂v∂x∂v=−∂y∂u
这两个方程称为柯西-黎曼方程,或柯西-黎曼条件,是复变函数可微的必要条件。柯西-黎曼方程只保证 $\Delta z $沿实轴以及虚轴逼近零时,
Δ
f
/
Δ
z
\Delta f/\Delta z
Δf/Δz 逼近同一极限,并不能保证
Δ
z
\Delta z
Δz 沿任意曲线逼近零时,
Δ
f
/
Δ
z
\Delta f/\Delta z
Δf/Δz 总是逼近同一极限。因此为了得到可微的充要条件还需加一些限制。
定理(在一点可微的充要条件):设$ f(z)=u(x,y)+iv(x,y) $定义在区域 D D D内,则 f ( z ) f(z) f(z) 在点 z = x + i y ∈ D z=x+iy\in D z=x+iy∈D可微的充要条件是:
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y) 在点 z = x + i y z=x+iy z=x+iy 可微
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y)在点 z = x + i y z=x+iy z=x+iy满足柯西-黎曼方程
证明: u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y)在点 z = x + i y z=x+iy z=x+iy可微,根据二元函数可微的必要条件,那么有:
Δ
u
=
∂
u
∂
x
Δ
x
+
∂
u
∂
y
Δ
y
+
o
(
∣
Δ
z
∣
)
Δ
v
=
∂
v
∂
x
Δ
x
+
∂
v
∂
y
Δ
y
+
o
(
∣
Δ
z
∣
)
\Delta u = \frac{\partial u}{\partial x}\Delta x + \frac{\partial u}{\partial y}\Delta y + o(|\Delta z|)\\ \Delta v = \frac{\partial v}{\partial x}\Delta x + \frac{\partial v}{\partial y}\Delta y + o(|\Delta z|)
Δu=∂x∂uΔx+∂y∂uΔy+o(∣Δz∣)Δv=∂x∂vΔx+∂y∂vΔy+o(∣Δz∣)
根据复变函数可微的定义:
lim
Δ
z
→
0
Δ
w
Δ
z
=
lim
Δ
z
→
0
Δ
u
+
i
Δ
v
Δ
z
=
lim
Δ
z
→
0
∂
u
∂
x
Δ
x
+
∂
u
∂
y
Δ
y
+
o
(
∣
Δ
z
∣
)
+
i
(
∂
v
∂
x
Δ
x
+
∂
v
∂
y
Δ
y
+
o
(
∣
Δ
z
∣
)
)
Δ
z
=
lim
Δ
x
→
0
Δ
y
→
0
∂
u
∂
x
Δ
x
+
∂
u
∂
y
Δ
y
+
i
(
∂
v
∂
x
Δ
x
+
∂
v
∂
y
Δ
y
)
Δ
x
+
i
Δ
y
+
o
(
∣
Δ
z
∣
)
+
i
o
(
∣
Δ
z
∣
)
Δ
z
\begin{array}{l} \lim_{\Delta z\to 0}\frac{\Delta w}{\Delta z} &= \lim_{\Delta z\to 0}\frac{\Delta u+i\Delta v}{\Delta z}\\ &=\lim_{\Delta z\to0}\frac{\frac{\partial u}{\partial x}\Delta x + \frac{\partial u}{\partial y}\Delta y + o(|\Delta z|)+i(\frac{\partial v}{\partial x}\Delta x + \frac{\partial v}{\partial y}\Delta y + o(|\Delta z|))}{\Delta z}\\ &=\lim_{\Delta x\to0\\ \Delta y\to0}\frac{\frac{\partial u}{\partial x}\Delta x + \frac{\partial u}{\partial y}\Delta y+i(\frac{\partial v}{\partial x}\Delta x + \frac{\partial v}{\partial y}\Delta y)}{\Delta x+i\Delta y} + \frac{o(|\Delta z|) + io(|\Delta z|)}{\Delta z} \end{array}
limΔz→0ΔzΔw=limΔz→0ΔzΔu+iΔv=limΔz→0Δz∂x∂uΔx+∂y∂uΔy+o(∣Δz∣)+i(∂x∂vΔx+∂y∂vΔy+o(∣Δz∣))=limΔx→0Δy→0Δx+iΔy∂x∂uΔx+∂y∂uΔy+i(∂x∂vΔx+∂y∂vΔy)+Δzo(∣Δz∣)+io(∣Δz∣)
根据柯西-黎曼方程
lim Δ x → 0 Δ y → 0 ∂ u ∂ x Δ x + ∂ u ∂ y Δ y + i ( ∂ v ∂ x Δ x + ∂ v ∂ y Δ y ) Δ x + i Δ y = lim Δ x → 0 Δ y → 0 ∂ u ∂ x ( Δ x + i Δ y ) + i ∂ v ∂ x ( Δ x + i Δ y ) Δ x + i Δ y = ∂ u ∂ x + i ∂ v ∂ x = ∂ v ∂ y − i ∂ u ∂ y \begin{array}{l} &\quad \lim_{\Delta x\to0\\ \Delta y\to0}\frac{\frac{\partial u}{\partial x}\Delta x + \frac{\partial u}{\partial y}\Delta y+i(\frac{\partial v}{\partial x}\Delta x + \frac{\partial v}{\partial y}\Delta y)}{\Delta x+i\Delta y}\\ &= \lim_{\Delta x\to0\\ \Delta y\to0}\frac{\frac{\partial u}{\partial x}(\Delta x+i\Delta y)+i\frac{\partial v}{\partial x}(\Delta x+i\Delta y)}{\Delta x+i\Delta y}\\ &=\frac{\partial u}{\partial x}+i\frac{\partial v}{\partial x}\\ &=\frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} \end{array} limΔx→0Δy→0Δx+iΔy∂x∂uΔx+∂y∂uΔy+i(∂x∂vΔx+∂y∂vΔy)=limΔx→0Δy→0Δx+iΔy∂x∂u(Δx+iΔy)+i∂x∂v(Δx+iΔy)=∂x∂u+i∂x∂v=∂y∂v−i∂y∂u
可以看到,复变函数可微定理的条件中,二元函数
u
(
x
,
y
)
,
v
(
x
,
y
)
u(x,y),\ v(x,y)
u(x,y), v(x,y)可微蕴含着偏导数
∂
u
∂
x
,
∂
u
∂
y
,
∂
v
∂
x
,
∂
v
∂
y
\frac{\partial u}{\partial x},\ \frac{\partial u}{\partial y},\ \frac{\partial v}{\partial x},\ \frac{\partial v}{\partial y}
∂x∂u, ∂y∂u, ∂x∂v, ∂y∂v
在
z
=
x
+
i
y
∈
D
z=x+iy\in D
z=x+iy∈D存在且连续。如果这四个偏导数满足柯西-黎曼方程,那么可以推出复变函数在该点可导。复变函数可导的要求比一元函数可到的要求严格得多,其具体体现就是函数的实部和虚部通过柯西-黎曼方程相联系。
极坐标表示的柯西-黎曼方程:在极坐标系中,$\Delta z $有两个特殊的方向逼近 0,
一是沿着径向逼近 0( Δ z = e i φ Δ ρ → 0 \Delta z = e^{i\varphi}\Delta \rho \to 0 Δz=eiφΔρ→0 ),
二是沿着角向逼近 0(
Δ
z
=
ρ
Δ
(
e
i
φ
)
=
i
ρ
e
i
φ
Δ
φ
→
0
\Delta z = \rho\Delta (e^{i\varphi}) = i\rho e^{i\varphi}\Delta \varphi\to 0
Δz=ρΔ(eiφ)=iρeiφΔφ→0)。那么极坐标系下的柯西-黎曼方程:
{
∂
u
∂
ρ
=
1
ρ
∂
v
∂
φ
1
ρ
∂
u
∂
φ
=
−
∂
v
∂
ρ
\left\{\begin{array}{l} \frac{\partial u}{\partial \rho}=\frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi}=-\frac{\partial v}{\partial \rho} \end{array}\right.
{∂ρ∂u=ρ1∂φ∂vρ1∂φ∂u=−∂ρ∂v
从直角坐标系下的柯西-黎曼方程通过变换公式,也能变换到极坐标系下形式。
2 解析函数
下面考察解析函数的定义与性质。
2.1 解析函数的定义
函数在某一点解析的定义:设$ f(z)$ 在点
z
0
z_0
z0的某领域
U
(
z
0
;
δ
)
U(z_0;\delta)
U(z0;δ),
使得
f
(
z
)
f(z)
f(z)在区域
U
(
z
0
;
δ
)
U(z_0;\delta)
U(z0;δ) 内处处可导,则称
f
(
z
)
f(z)
f(z) 在点
z
0
z_0
z0解析。
解析函数的定义:设 f ( z ) f(z) f(z) 定义在区域 D D D 内,如果 $f(z) $在区域 D D D内的每一点都可导,则称 f ( z ) f(z) f(z)在区域 D D D内解析,此时也称 f ( z ) f(z) f(z)为区域 D D D 内的解析函数,或全纯函数。
可见函数在某点解析,那么必在该点可导,但反之不成立。由复变函数可微条件和解析函数的定义,我们可得函数在区域 D D D 内解析的充要条件。
定理(函数解析的充要条件 1):设 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 定义在区域 D D D 内,则 f ( z ) f(z) f(z) 在 D D D 内解析的充要条件是:
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y) 在 D D D 内可微
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y) 在 D D D 内每一点满足柯西-黎曼方程
定理(函数解析的充要条件 2):设 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 定义在区域 D D D 内,则 f ( z ) f(z) f(z) 在 D D D 内解析的充要条件是:
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y) 在 D D D 内具有一阶连续的偏导数
- u ( x , y ) , v ( x , y ) u(x,y),\ v(x,y) u(x,y), v(x,y) 在 D D D 内每一点满足柯西-黎曼方程
修改后的内容如下:
2.2 解析函数的性质
解析函数的四则运算:如果 f ( z ) , g ( z ) f(z),g(z) f(z),g(z) 都在区域 D D D 内解析,则
- 线性解析法则: [ k ( f ( z ) ± g ( z ) ) ] ′ = k f ′ ( z ) ± k g ′ ( z ) [k(f(z)\pm g(z))]^{\prime} = kf^{\prime}(z)\pm kg^{\prime}(z) [k(f(z)±g(z))]′=kf′(z)±kg′(z)
- 乘法解析法则: ( f ( z ) ⋅ g ( z ) ) ′ = f ′ ( z ) g ( z ) + f ( z ) g ′ ( z ) (f(z)\cdot g(z))^{\prime} = f^{\prime}(z)g(z)+f(z)g^{\prime}(z) (f(z)⋅g(z))′=f′(z)g(z)+f(z)g′(z)
- 除法解析法则: ( f ( z ) g ( z ) ) ′ = f ′ ( z ) g ( z ) − f ( z ) g ′ ( z ) g 2 ( z ) , ( g ( z ) ≠ 0 ) (\frac{f(z)}{g(z)})^{\prime}=\frac{f^{\prime}(z)g(z)-f(z)g^{\prime}(z)}{g^2(z)},\ (g(z)\neq 0) (g(z)f(z))′=g2(z)f′(z)g(z)−f(z)g′(z), (g(z)=0)
- 复合函数解析法则: F [ f ( z ) ] ′ = F ′ ( f ( z ) ) ⋅ f ′ ( z ) F[f(z)]^{\prime}=F^{\prime}(f(z))\cdot f^{\prime}(z) F[f(z)]′=F′(f(z))⋅f′(z)
- 反函数解析法则:设 w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内单叶解析, ( f − 1 ( w ) ) ′ = 1 f ′ ( z ) = 1 f ′ [ f − 1 ( w ) ] (f^{-1}(w))^{\prime} =\frac{1}{f^{\prime}(z)}=\frac{1}{f^{\prime}[f^{-1}(w)]} (f−1(w))′=f′(z)1=f′[f−1(w)]1
单叶函数:在区域 D D D 上解析的单值复变函数 f ( z ) f(z) f(z) ,若对 D D D 中任意不同的两点 z 1 , z 2 z_1,z_2 z1,z2 ,有 f ( z 1 ) ≠ f ( z 2 ) f(z_1)\neq f(z_2) f(z1)=f(z2) ,则说 f ( z ) f(z) f(z) 为 D D D 上的单叶函数。
解析函数实部与虚部的正交性:若函数 w = u + i v w=u+iv w=u+iv 在区域 D D D 上解析,则, u ( x , y ) = C 1 , v ( x , y ) = C 2 u(x,y) = C_1,\ v(x,y)=C_2 u(x,y)=C1, v(x,y)=C2 ( C 1 , C 2 C_1,C_2 C1,C2 为常数)是 D D D 上的两组正交曲线。
将柯西-黎曼方程的两边分别相乘,得:
∂
u
∂
x
∂
v
∂
x
+
∂
u
∂
y
∂
v
∂
y
=
0
(
∂
u
∂
x
,
∂
u
∂
y
)
⋅
(
∂
v
∂
x
,
∂
v
∂
y
)
=
0
∇
u
⋅
∇
v
=
0
\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial v}{\partial y} = 0\\ (\frac{\partial u}{\partial x},\frac{\partial u}{\partial y})\cdot(\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}) = 0\\ \nabla u\cdot \nabla v = 0
∂x∂u∂x∂v+∂y∂u∂y∂v=0(∂x∂u,∂y∂u)⋅(∂x∂v,∂y∂v)=0∇u⋅∇v=0
曲线
u
(
x
,
y
)
=
C
1
,
v
(
x
,
y
)
=
C
2
u(x,y) = C_1,\ v(x,y)=C_2
u(x,y)=C1, v(x,y)=C2 也称为二元函数
u
,
v
u,\ v
u, v 的等高线。根据梯度的几何意义,
∇
u
,
∇
v
\nabla u, \nabla v
∇u,∇v 分别是曲线
u
,
v
u,v
u,v 的法向量。法向量内积为零,那么曲线族
u
,
v
u,v
u,v 也相互正交。
解析函数的无穷可微性:若 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y) 在区域 D D D 内解析,则 f ( z ) f(z) f(z) 在区域 D D D 内有各阶导数 f ( k ) ( z ) , ( k = 1 , 2 , ⋯ ) f^{(k)}(z),\ (k=1,2,\cdots) f(k)(z), (k=1,2,⋯) ,从而 f ( k ) ( z ) ( k = 1 , 2 , ⋯ ) f^{(k)}(z)\ (k=1,2,\cdots) f(k)(z) (k=1,2,⋯) 在区域 D D D 内也解析。
解析函数实部与虚部的调和性:若复变函数 w = u + i v w=u+iv w=u+iv 在区域 D D D 上解析,则 u , v u,\ v u, v 均为 D D D 上的调和函数。
二元函数在区域内有一阶连续偏导意味着,函数在区域内二阶偏导存在。二阶偏导数 ∂ 2 u ∂ x 2 , ∂ 2 u ∂ x ∂ y , ∂ 2 u ∂ y 2 , ∂ 2 v ∂ x 2 , ∂ 2 v ∂ x ∂ y , ∂ 2 v ∂ y 2 \frac{\partial^2u}{\partial x^2},\frac{\partial^2u}{\partial x\partial y},\frac{\partial^2u}{\partial y^2},\frac{\partial^2v}{\partial x^2},\frac{\partial^2v}{\partial x\partial y},\frac{\partial^2v}{\partial y^2} ∂x2∂2u,∂x∂y∂2u,∂y2∂2u,∂x2∂2v,∂x∂y∂2v,∂y2∂2v都存在。
柯西-黎曼方程中,等式 ∂ u ∂ x = ∂ v ∂ y \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} ∂x∂u=∂y∂v 对 x x x 求偏导得:
∂
2
u
∂
x
2
=
∂
2
v
∂
y
∂
x
(
1
)
\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial y\partial x}\quad (1)
∂x2∂2u=∂y∂x∂2v(1)
柯西-黎曼方程中,等式
∂
u
∂
y
=
−
∂
v
∂
x
\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
∂y∂u=−∂x∂v对
y
y
y求偏导得:
∂
2
u
∂
y
2
=
−
∂
2
v
∂
y
∂
x
(
2
)
\frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial y\partial x}\quad (2)
∂y2∂2u=−∂y∂x∂2v(2)
(1)(2) 相加得:
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
0
\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2} = 0
∂x2∂2u+∂y2∂2u=0
同理可得:
∂
2
v
∂
x
2
+
∂
2
v
∂
y
2
=
0
\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2} = 0
∂x2∂2v+∂y2∂2v=0
所以说解析函数的 $u,v $均为调和函数,且互为共轭调和函数。
共轭调和函数的定义:若二元函数 u ( x , y ) , v ( x , y ) u(x,y),v(x,y) u(x,y),v(x,y)都是区域 D D D内的调和函数,且满足柯西-黎曼条件,则称 v ( x , y ) v(x,y) v(x,y)是 $u(x,y) $的共轭调和函数, − u ( x , y ) -u(x,y) −u(x,y) 是 v ( x , y ) v(x,y) v(x,y) 的共轭调和函数。
根据解析函数实部与虚部的调和性,我们可以得到一个重要的推论。
推论(函数解析的充要条件):设 u ( x , y ) , v ( x , y ) u(x,y),v(x,y) u(x,y),v(x,y)都是定义在 $D $内的二元实函数,则: v v v 为 u u u 的共轭调和函数 ⇔ \Leftrightarrow ⇔ w = u + i v w=u+iv w=u+iv在区域 D D D上解析。
根据该推论,若给定一个二元调和函数,我们可以把它看成某个解析函数的实部或虚部,利用柯西-黎曼方程,构造出一个解析函数。
定理(解析函数的构造):若 u ( x , y ) u(x,y) u(x,y) 是单连通区域 D D D 内的一个调和函数,则存在函数 v ( x , y ) v(x,y) v(x,y) ,使得:
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
f(z) = u(x,y)+iv(x,y)
f(z)=u(x,y)+iv(x,y)
为区域
D
D
D 内的解析函数,并且:
v
(
x
,
y
)
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
−
∂
u
∂
y
d
x
+
∂
u
∂
x
d
y
+
C
v(x,y)=\int_{(x_0,y_0)}^{(x,y)}-\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy+C
v(x,y)=∫(x0,y0)(x,y)−∂y∂udx+∂x∂udy+C
其中
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 是区域
D
D
D 内的一个定点,
(
x
,
y
)
(x,y)
(x,y) 是区域
D
D
D 内的一个点,
C
C
C 是任意实数。
同理可得,若 v ( x , y ) v(x,y) v(x,y) 是单连通区域 D D D 内的一个调和函数,则存在函数 u ( x , y ) u(x,y) u(x,y) ,使得:
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
f(z) = u(x,y)+iv(x,y)
f(z)=u(x,y)+iv(x,y)
为区域
D
D
D 内的解析函数,并且:
u
(
x
,
y
)
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
∂
v
∂
y
d
x
−
∂
v
∂
x
d
y
+
C
u(x,y)=\int_{(x_0,y_0)}^{(x,y)}\frac{\partial v}{\partial y}dx - \frac{\partial v}{\partial x}dy+C
u(x,y)=∫(x0,y0)(x,y)∂y∂vdx−∂x∂vdy+C
其中
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 是区域
D
D
D 内的一个定点,
(
x
,
y
)
(x,y)
(x,y) 是区域
D
D
D 内的一个点,
C
C
C 是任意实数。
以调和函数 u = x 2 − y 2 u=x^2-y^2 u=x2−y2 为例,求以 u u u 为实部的解析函数 f ( z ) f(z) f(z)
已知, ∂ u ∂ x = 2 x , ∂ u ∂ y = − 2 y \frac{\partial u}{\partial x}=2x,\ \frac{\partial u}{\partial y}= -2y ∂x∂u=2x, ∂y∂u=−2y ,那么:
v
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
2
y
d
x
+
2
x
d
y
+
C
v=\int_{(x_0,y_0)}^{(x,y)} 2ydx + 2xdy+C
v=∫(x0,y0)(x,y)2ydx+2xdy+C
因为
f
(
z
)
f(z)
f(z) 在
D
D
D 内解析,那么根据格林公式,曲线积分与路径无关,取
(
x
0
,
y
0
)
=
(
0
,
0
)
(x_0,y_0)=(0,0)
(x0,y0)=(0,0) 以及如图所示的积分路径。
那么 v = 2 x y + C v=2xy+C v=2xy+C ,解析函数 f ( z ) = x 2 − y 2 + i ( 2 x y + C ) f(z)=x^2-y^2+i(2xy+C) f(z)=x2−y2+i(2xy+C)
2.3解析函数:
f ( z ) = e z f(z)=e^z f(z)=ez 在整个复平面上解析,且 f ′ ( z ) = f ( z ) f'(z)=f(z) f′(z)=f(z)
复三角函数: f ( z ) = sin z , f ( z ) = cos z f(z)=\sin z, f(z)=\cos z f(z)=sinz,f(z)=cosz 在整个复平面上解析,且 ( sin z ) ′ = cos z , ( cos z ) ′ = − sin z (\sin z)'=\cos z, (\cos z)'=-\sin z (sinz)′=cosz,(cosz)′=−sinz
复双曲函数: f ( z ) = s h z , f ( z ) = c h z f(z)=sh z,\ f(z) = ch z f(z)=shz, f(z)=chz 在整个复平面上解析函数在物理上的应用
平面场:在曲线与曲面积分的最后介绍了场的概念,如果所研究的场在某方向上是均匀的,从而只需在垂直于该方向的平面上研究它,这样的场称为平面场。
以平面静电场为例,它的电势满足二维拉普拉斯方程,那么电场所处区域上的某一解析函数的实部或虚部就可被用来表示该区域上静电场的电视。我们称这一解析函数为该平面静电场的复势。
复变函数论:三、复变函数积分
本文并非对微积分学进行专业的介绍,而是学习计算机图形学的数学笔记,主要参考高等教育出版社《数学物理方法》第四版,在内容上有所取舍。
复变函数的积分是研究解析函数的重要工具之一,我们可以通过这种工具证明解析函数许多重要性质。复变函数的积分主要涉及两大定理:1. 柯西积分定理;2. 柯西积分公式。柯西积分定理类似于单连通区域的格林公式,讨论解析函数积分与积分路径的关系;柯西积分公式说明了解析函数在区域内的任意值可以用区域的边界值表示。运用柯西积分公式,我们可以得到解析函数的无穷可微性。
1 复积分
复变函数的积分与第二项曲线积分的定义类似,是复变函数在其定义区域上沿着一条可求长度的光滑曲线或分段光滑曲线的积分。我们同样用“分割,近似,求极限”的思想,叙述复变函数积分。
分割:将复平面上的有向曲线 A B ⌢ \stackrel\frown{AB} AB⌢ 分割成 n n n 个有向弧段 z i − 1 z i ⌢ , i = 1 , 2 , ⋯ \stackrel\frown{z_{i-1}z_i},\ i=1,2,\cdots zi−1zi⌢, i=1,2,⋯,取小弧段上一点 ζ i \zeta_i ζi 带入复变函数得 f ( ζ i ) f(\zeta_i) f(ζi)
近似:令 z i − 1 z i ⌢ ≈ z i − z i − 1 = Δ z i \stackrel\frown{z_{i-1}z_i}\approx z_i-z_{i-1}=\Delta z_i zi−1zi⌢≈zi−zi−1=Δzi ,作和: ∑ k = 1 n f ( ζ i ) Δ z i \sum^n_{k=1}f(\zeta_i)\Delta z_i ∑k=1nf(ζi)Δzi
求极限:当 n → ∞ , Δ z i → 0 n\to \infty,\ \Delta z_i\to 0 n→∞, Δzi→0 ,如果极限:
lim
Δ
z
i
→
0
∑
k
=
1
n
f
(
ζ
i
)
Δ
z
i
\lim_{\Delta z_i\to 0}\sum^n_{k=1}f(\zeta_i)\Delta z_i
Δzi→0limk=1∑nf(ζi)Δzi
存在,则称这个和的极限为函数
f
(
z
)
f(z)
f(z) 沿曲线
l
l
l 从
A
A
A 到
B
B
B 的路积分,记为:
∫ l f ( z ) d z \int_l f(z)dz ∫lf(z)dz
其中, f ( z ) = u ( x , y ) + i v ( x , y ) , d z = d x + i d y f(z)=u(x,y) + iv(x,y),\ dz = dx+idy f(z)=u(x,y)+iv(x,y), dz=dx+idy ,那么路积分也可表示为:
∫
l
(
u
(
x
,
y
)
+
i
v
(
x
,
y
)
)
(
d
x
+
i
d
y
)
=
∫
l
u
(
x
,
y
)
d
x
−
v
(
x
,
y
)
d
y
+
i
∫
l
v
(
x
,
y
)
d
x
+
u
(
x
,
y
)
d
y
\int_l (u(x,y) + iv(x,y))(dx+idy) = \int_l u(x,y)dx - v(x,y)dy + i\int_lv(x,y)dx + u(x,y)dy
∫l(u(x,y)+iv(x,y))(dx+idy)=∫lu(x,y)dx−v(x,y)dy+i∫lv(x,y)dx+u(x,y)dy
根据上述公式可得复变函数路积分可积的充要条件:设曲线
l
l
l 为复平面上的一条光滑或分段光滑曲线,则
f
(
z
)
f(z)
f(z) 沿
l
l
l 可积的充要条件是两个第二型曲线积分:
∫
l
u
d
x
−
v
d
y
和
∫
l
v
d
x
+
u
d
y
\int_l udx - vdy\quad \text{和} \quad \int_lvdx+udy
∫ludx−vdy和∫lvdx+udy
都存在。则复变函数的路积分可以归结为两个二元函数的线积分。
1.1 复积分的参数方程计算公式
设有向光滑曲线
l
=
A
B
⌢
l=\stackrel\frown{AB}
l=AB⌢ 的参数方程为:
z
=
z
(
t
)
=
x
(
t
)
+
i
y
(
t
)
,
(
α
≤
t
≤
β
)
z=z(t)=x(t)+iy(t),\quad (\alpha\le t\le \beta)
z=z(t)=x(t)+iy(t),(α≤t≤β)
其中,$ z(t)
在
在
在 [\alpha,\beta]
上具有一阶连续的导数,
上具有一阶连续的导数,
上具有一阶连续的导数, A=z(\alpha),\ B=z(\beta)$ ,且:
z
′
(
t
)
=
x
′
(
t
)
+
i
y
′
(
t
)
≠
0
z^{\prime}(t) = x^{\prime}(t) + iy^{\prime}(t)\neq 0
z′(t)=x′(t)+iy′(t)=0
又设$ f(z)=u(x,y)+iv(x,y) $在 $l $上连续,则有:
∫
l
f
(
z
)
d
z
=
∫
l
u
d
x
−
v
d
y
+
i
∫
l
v
d
x
+
u
d
y
=
∫
α
β
[
u
(
t
)
x
′
(
t
)
−
v
(
t
)
y
′
(
t
)
]
d
t
+
i
∫
α
β
[
v
(
t
)
x
′
(
t
)
+
u
(
t
)
y
′
(
t
)
]
d
t
=
∫
α
β
[
u
(
t
)
+
i
v
(
t
)
]
[
x
′
(
t
)
+
i
y
′
(
t
)
]
d
t
=
∫
α
β
f
[
z
(
t
)
]
z
′
(
t
)
d
t
\begin{array}{l} \int_l f(z)dz &= \int_lu dx - vdy + i\int_l vdx + udy\\ &= \int^{\beta}_{\alpha}[u(t)x^{\prime}(t)-v(t)y^{\prime}(t)]dt + i\int^{\beta}_{\alpha}[v(t)x^{\prime}(t)+u(t)y^{\prime}(t)]dt\\ &= \int^{\beta}_{\alpha}[u(t)+iv(t)][x^{\prime}(t)+iy^{\prime}(t)]dt\\ &= \int^{\beta}_{\alpha}f[z(t)]z^{\prime}(t)dt \end{array}
∫lf(z)dz=∫ludx−vdy+i∫lvdx+udy=∫αβ[u(t)x′(t)−v(t)y′(t)]dt+i∫αβ[v(t)x′(t)+u(t)y′(t)]dt=∫αβ[u(t)+iv(t)][x′(t)+iy′(t)]dt=∫αβf[z(t)]z′(t)dt
该公式称为复积分的参数方程计算公式。
1.2 复积分的基本性质
- 线性性质: ∫ l [ α f ( z ) + β g ( z ) ] d z = α ∫ l f ( z ) d z + β ∫ l g ( z ) d z \int_l[\alpha f(z)+\beta g(z)]dz = \alpha\int_l f(z)dz + \beta \int_l g(z)dz ∫l[αf(z)+βg(z)]dz=α∫lf(z)dz+β∫lg(z)dz
- 分段可加性: ∫ l f ( z ) d z = ∫ l 1 f ( z ) d z + ∫ l 2 f ( z ) d z + ⋯ + ∫ l n f ( z ) d z \int_l f(z)dz = \int_{l_1}f(z)dz + \int_{l_2}f(z)dz + \cdots + \int_{l_n}f(z)dz ∫lf(z)dz=∫l1f(z)dz+∫l2f(z)dz+⋯+∫lnf(z)dz ,其中 l 1 , l 2 , ⋯ , l n l_1,l_2,\cdots,l_n l1,l2,⋯,ln 首位相连,连成 l l l
- 反转积分路径,积分变号: ∫ l − f ( z ) d z = − ∫ l f ( z ) d z \int_{l^{-}}f(z)dz = -\int_lf(z)dz ∫l−f(z)dz=−∫lf(z)dz
- 积分不等式 1: ∣ ∫ l f ( z ) d z ∣ ≤ ∫ l ∣ f ( z ) ∣ ∣ d z ∣ |\int_lf(z)dz| \le \int_l|f(z)||dz| ∣∫lf(z)dz∣≤∫l∣f(z)∣∣dz∣
- 积分不等式 2: ∣ ∫ l f ( z ) d z ∣ ≤ M ⋅ L |\int_lf(z)dz| \le M\cdot L ∣∫lf(z)dz∣≤M⋅L , 其中 M M M 是 ∣ f ( z ) ∣ |f(z)| ∣f(z)∣ 的最大值, L L L 是 l l l 的全长, M ⋅ L M\cdot L M⋅L 也称为积分的估计值
2 柯西积分定理
类似于单连通区域的格林公式,我们可以得到单连通区域的柯西定理。
单连通区域柯西定理:如果函数 f ( z ) f(z) f(z) 在闭单连通区域 B B B 上解析,则沿 B B B 上任一分段光滑闭合曲线 l l l ,有:
∮
l
f
(
z
)
d
z
=
0
\oint_lf(z)dz = 0
∮lf(z)dz=0
证明:
∮
l
f
(
z
)
d
z
=
∮
l
u
(
x
,
y
)
d
x
−
v
(
x
,
y
)
d
y
+
i
∮
l
v
(
x
,
y
)
d
x
+
u
(
x
,
y
)
d
y
\oint_lf(z)dz = \oint_lu(x,y)dx - v(x,y)dy + i\oint_lv(x,y)dx + u(x,y)dy
∮lf(z)dz=∮lu(x,y)dx−v(x,y)dy+i∮lv(x,y)dx+u(x,y)dy
由于
f
(
z
)
f(z)
f(z) 在
B
B
B 上解析,那么
∂
u
∂
x
,
∂
u
∂
y
,
∂
v
∂
x
,
∂
v
∂
y
\frac{\partial u}{\partial x},\ \frac{\partial u}{\partial y},\ \frac{\partial v}{\partial x},\ \frac{\partial v}{\partial y}
∂x∂u, ∂y∂u, ∂x∂v, ∂y∂v
在
B
B
B 上连续,对上式右端实部及虚部应用格林公式:
∮
l
f
(
z
)
d
z
=
−
∬
S
(
∂
v
∂
x
+
∂
u
∂
y
)
d
x
d
y
+
i
∬
S
(
∂
u
∂
x
−
∂
v
∂
y
)
d
x
d
y
\oint_lf(z)dz = -\iint_S (\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})dxdy + i\iint_S(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y})dxdy
∮lf(z)dz=−∬S(∂x∂v+∂y∂u)dxdy+i∬S(∂x∂u−∂y∂v)dxdy
将柯西-黎曼方程带入上式,得
∮
l
f
(
z
)
d
z
=
0
\oint_lf(z)dz = 0
∮lf(z)dz=0 ,其中
S
S
S 是
l
l
l 所包围的区域,且
S
⊂
B
S\subset B
S⊂B
根据单连通区域柯西定理和复积分分段可加性,我们可以得出推论:函数 f ( z ) f(z) f(z) 在单连通区域 B B B 内解析,则 f ( z ) f(z) f(z) 在 B B B 内的积分与路径无关。积分与路径无关是简化单连通区域内解析函数积分的一种常用的、有效的方法。
有时所研究的函数在区域上并非处处解析,而是在某些点上不可导(甚至不连续或没有定义),为了将这些奇点排除在区域之外,需要作适当的闭合曲线将这些奇点分隔出去,也就是复连通区域。类似于复连通区域的格林公式,我们可以得到复连通区域的柯西定理。
复连通区域的柯西定理:如果函数$ f(z)$ 在闭复连通区域 $B 上解析,则沿曲线边界 上解析,则沿曲线边界 上解析,则沿曲线边界 l$ ,有: ∮ l f ( z ) d z = 0 \oint_lf(z)dz = 0 ∮lf(z)dz=0
复连通区域可以通过有限的线段分割成单连通区域。如上图:
∮
l
f
(
z
)
d
z
=
∫
l
f
(
z
)
d
z
+
∫
l
1
f
(
z
)
d
z
+
∫
l
2
f
(
z
)
d
z
=
0
\oint_l f(z)dz = \int_l f(z)dz + \int_{l_1}f(z)dz + \int_{l_2}f(z)dz = 0
∮lf(z)dz=∫lf(z)dz+∫l1f(z)dz+∫l2f(z)dz=0
其中的分割线
A
B
,
C
D
AB,CD
AB,CD从相反的两个方向各取了一次,在相加的过程中相互抵消了。移项得:
∮
l
f
(
z
)
=
∑
i
=
1
n
∮
l
i
−
f
(
z
)
d
z
\oint_l f(z) = \sum_{i=1}^n \oint_{l_i^-}f(z)dz
∮lf(z)=i=1∑n∮li−f(z)dz
柯西定理总结了以下几点:
- 若 f ( z ) f(z) f(z) 在单连通区域 B B B 上解析,在闭单连通区域 B ‾ \overline{B} B 上连续,则沿 B ‾ \overline{B} B 上任一分段光滑闭合曲线(也可以是 B ‾ \overline{B} B 的边界)的积分为 0 0 0;
- 闭复连通区域上的解析函数沿所有内外边界线正方向积分和为 0 0 0;
- 闭复连通区域上的解析函数沿外边界线逆时针方向积分等于沿所有内边界线逆时针方向积分之和。
下面考察一个重要函数的积分 I = ∮ l ( z − α ) n d z , n ∈ Z I=\oint_l(z-\alpha)^ndz,\ n\in Z I=∮l(z−α)ndz, n∈Z ,该积分的结果在下一节的柯西公式和之后的留数定理中都有用到
当 n ≥ 0 n\geq 0 n≥0 时, ( z − α ) n (z-\alpha)^n (z−α)n 在其所围的区域上解析,根据柯西定理, ∮ l ( z − α ) n d z = 0 \oint_l(z-\alpha)^n dz = 0 ∮l(z−α)ndz=0。
当 n < 0 n<0 n<0 时, ( z − α ) n (z-\alpha)^n (z−α)n 在其所围的区域上解析,根据柯西定理, ∮ l ( z − α ) n d z = 0 \oint_l(z-\alpha)^n dz = 0 ∮l(z−α)ndz=0。
当 n < 0 n<0 n<0 且曲线 l l l 包围点 α \alpha α 时,点 α \alpha α 就是函数 ( z − α ) n (z-\alpha)^n (z−α)n 的一个奇点。以点 α \alpha α 为圆心,任意 R R R 为半径,将曲线 l l l 所围的区域变成一个复连通区域。
根据复连通区域的柯西定理:
∮
l
(
z
−
α
)
n
d
z
=
∮
C
(
z
−
α
)
n
d
z
\oint _l (z-\alpha)^n dz = \oint_C (z-\alpha)^n dz
∮l(z−α)ndz=∮C(z−α)ndz
令
z
−
α
=
R
e
i
φ
z-\alpha = Re^{i\varphi}
z−α=Reiφ ,那么:
∮
C
(
R
e
i
φ
)
n
d
(
α
+
R
e
i
φ
)
=
∮
C
R
n
e
i
n
φ
R
e
i
φ
i
d
φ
=
i
R
n
+
1
∫
0
2
π
e
i
(
n
+
1
)
φ
d
φ
\oint_C (Re^{i\varphi})^n d(\alpha+Re^{i\varphi}) = \oint_C R^ne^{in\varphi}Re^{i\varphi}id\varphi = iR^{n+1}\int^{2\pi}_0e^{i(n+1)\varphi}d\varphi
∮C(Reiφ)nd(α+Reiφ)=∮CRneinφReiφidφ=iRn+1∫02πei(n+1)φdφ
如果
n
≠
−
1
n\neq -1
n=−1 ,则:
i
R
n
+
1
∫
0
2
π
e
i
(
n
+
1
)
φ
d
φ
=
i
R
n
+
1
1
i
(
n
+
1
)
e
i
(
n
+
1
)
φ
∣
0
2
π
=
0
iR^{n+1}\int^{2\pi}_0e^{i(n+1)\varphi}d\varphi = iR^{n+1}\frac{1}{i(n+1)}e^{i(n+1)\varphi}|^{2\pi}_0 = 0
iRn+1∫02πei(n+1)φdφ=iRn+1i(n+1)1ei(n+1)φ∣02π=0
如果
n
=
−
1
n=-1
n=−1 ,则:
i
R
n
+
1
∫
0
2
π
e
i
(
n
+
1
)
φ
d
φ
=
i
∫
0
2
π
d
φ
=
2
π
i
iR^{n+1}\int^{2\pi}_0e^{i(n+1)\varphi}d\varphi =i\int^{2\pi}_0d\varphi = 2\pi i
iRn+1∫02πei(n+1)φdφ=i∫02πdφ=2πi
总结起来:
1 2 π i ∮ l d z z − α = { 0 ( l 不包围 α ) 1 ( l 包围 α ) \frac{1}{2\pi i}\oint_l \frac{dz}{z-\alpha} = \left\{\begin{matrix} 0\ (l 不包围 \alpha)\\ 1 \ \ \ \ \ (l 包围 \alpha) \end{matrix}\right. 2πi1∮lz−αdz={0 (l不包围α)1 (l包围α)
1 2 π i ∮ l ( z − α ) n d z = 0 ( n ≠ − 1 ) \frac{1}{2\pi i}\oint_l(z-\alpha)^n dz = 0\quad (n\neq -1) 2πi1∮l(z−α)ndz=0(n=−1)
2.1 复变函数的定积分,变上限积分与不定积分
根据柯西定理,我们发现,单连通区域上的解析函数沿区域内任一路径 l l l 的积分 ∫ l f ( z ) d z \int_l f(z)dz ∫lf(z)dz 的值只与起点和终点有关,而与路径无关,这类似于一元函数的定积分;当起点 z 0 z_0 z0 固定时, z z z 为一动点,这个路径积分就定义了一个单值函数,类似于一元函数的不定积分;如果变上限积分定义的函数处处可导,则就得到了 f ( z ) f(z) f(z) 的一个原函数。
复变函数变上限积分的定义:设函数
f
(
z
)
f(z)
f(z) 在区域
D
D
D 内连续,
z
0
z_0
z0 为
D
D
D 内一个定点,
z
z
z 为
D
D
D 内的动点,曲线
C
C
C 为
D
D
D 内以
z
0
z_0
z0 为起点,
z
z
z 为终点的任一条曲线,记:
F
(
z
)
=
∫
z
0
z
f
(
ζ
)
d
ζ
=
∫
C
f
(
ζ
)
d
ζ
F(z) = \int^z_{z_0}f(\zeta)d\zeta = \int_C f(\zeta)d\zeta
F(z)=∫z0zf(ζ)dζ=∫Cf(ζ)dζ
则称
F
(
z
)
F(z)
F(z) 为由
f
(
z
)
f(z)
f(z) 在
D
D
D 内定义的一个变上限函数。
复变函数原函数的定义:设函数 f ( z ) f(z) f(z) 定义在区域 D D D 内,如果存在 D D D 内的单值函数 F ( z ) F(z) F(z) ,满足 F ′ ( z ) = f ( z ) F'(z)=f(z) F′(z)=f(z) 则称 F ( z ) F(z) F(z) 为 f ( z ) f(z) f(z) 在 D D D 内的一个单值原函数或不定积分(显然 F ( z ) F(z) F(z) 在 D D D 内解析)。
定理(单连通区域复变函数原函数存在定理):设
f
(
z
)
f(z)
f(z) 在单连通区域
D
D
D 内解析,则变上限函数
F
(
z
)
=
∫
z
0
z
f
(
ζ
)
d
ζ
=
∫
C
f
(
ζ
)
d
ζ
F(z) = \int^z_{z_0}f(\zeta)d\zeta = \int_C f(\zeta)d\zeta
F(z)=∫z0zf(ζ)dζ=∫Cf(ζ)dζ
在区域
D
D
D 内解析,且
F
′
(
z
)
=
f
(
z
)
F'(z)=f(z)
F′(z)=f(z) ,即
F
(
z
)
F(z)
F(z) 为
f
(
z
)
f(z)
f(z) 在
D
D
D 内的一个原函数。
定理(单连通区域内复变函数积分的牛顿-莱布尼兹公式):若 Φ ( z ) \Phi(z) Φ(z) 为 f ( z ) f(z) f(z) 在单连通区域 D D D 内的一个原函数,则:
∫
z
0
z
f
(
ζ
)
d
ζ
=
Φ
(
z
)
−
Φ
(
z
0
)
\int^{z}_{z_0}f(\zeta)d\zeta = \Phi(z)-\Phi(z_0)
∫z0zf(ζ)dζ=Φ(z)−Φ(z0)
其中
z
0
,
z
z_0, z
z0,z 为
D
D
D 内的两点,
z
0
z_0
z0 为起点,
z
z
z 为终点的任一条曲线。
3 柯西积分公式
定理(柯西积分公式):设 D D D 是单连通区域,其边界为 l l l,如果函数 f ( z ) f(z) f(z) 在区域 D D D 内解析,在闭区域 D ‾ = D + l \overline{D} = D+l D=D+l 上连续,则对任意 α ∈ D \alpha\in D α∈D,总有:
f
(
α
)
=
1
2
π
i
∫
l
f
(
z
)
z
−
α
d
z
f(\alpha)=\frac{1}{2\pi i}\int_l\frac{f(z)}{z - \alpha}dz
f(α)=2πi1∫lz−αf(z)dz
该式称为柯西积分公式,也称为解析函数的积分表示,该式表明解析函数在区域内任一点的值完全可用该函数在区域边界上的值表示出来。
由上面重要函数积分,易得:
f
(
α
)
=
f
(
α
)
2
π
i
∮
l
1
z
−
α
d
z
=
1
2
π
i
∮
l
f
(
α
)
z
−
α
d
z
f(\alpha)=\frac{f(\alpha)}{2\pi i}\oint_l \frac{1}{z-\alpha} dz = \frac{1}{2\pi i}\oint_l \frac{f(\alpha)}{z-\alpha} dz
f(α)=2πif(α)∮lz−α1dz=2πi1∮lz−αf(α)dz
只需证明:
∮
l
f
(
z
)
−
f
(
α
)
z
−
α
d
z
=
0
\oint_l \frac{f(z)-f(\alpha)}{z-\alpha} dz = 0
∮lz−αf(z)−f(α)dz=0
已知
α
=
z
\alpha=z
α=z 是函数
[
f
(
z
)
−
f
(
α
)
]
/
(
z
−
α
)
[f(z)-f(\alpha)]/(z-\alpha)
[f(z)−f(α)]/(z−α) 的奇点,那么以
α
\alpha
α 为圆心,
ε
\varepsilon
ε 为半径做圆
C
ε
C_{\varepsilon}
Cε,将
l
l
l 所围的区域变成一个复连通区域,那么根据复连通区域的柯西定理:
∮
l
f
(
z
)
−
f
(
α
)
z
−
α
d
z
=
∮
C
ε
f
(
z
)
−
f
(
α
)
z
−
α
d
z
\oint_l\frac{f(z)-f(\alpha)}{z-\alpha}dz = \oint_{C_{\varepsilon}}\frac{f(z)-f(\alpha)}{z-\alpha} dz
∮lz−αf(z)−f(α)dz=∮Cεz−αf(z)−f(α)dz
根据积分不等式2:
∮
C
ε
f
(
z
)
−
f
(
α
)
z
−
α
d
z
≤
max
{
∣
f
(
z
)
−
f
(
α
)
z
−
α
∣
}
⋅
l
(
C
ε
)
\oint_{C_{\varepsilon}}\frac{f(z)-f(\alpha)}{z-\alpha} dz \le \max\{|\frac{f(z)-f(\alpha)}{z-\alpha}|\}\cdot l(C_{\varepsilon})
∮Cεz−αf(z)−f(α)dz≤max{∣z−αf(z)−f(α)∣}⋅l(Cε)
其中,
l
(
C
ε
)
l(C_{\varepsilon})
l(Cε) 为积分路径的长度,即
2
π
ε
2\pi\varepsilon
2πε,
∣
z
−
α
∣
=
ε
|z-\alpha| = \varepsilon
∣z−α∣=ε,那么不等式写作:
∮
C
ε
f
(
z
)
−
f
(
α
)
z
−
α
d
z
≤
2
π
max
{
∣
f
(
z
)
−
f
(
α
)
∣
}
\oint_{C_{\varepsilon}}\frac{f(z)-f(\alpha)}{z-\alpha} dz \le 2\pi \max\{|f(z)-f(\alpha)|\}
∮Cεz−αf(z)−f(α)dz≤2πmax{∣f(z)−f(α)∣}
当
∣
z
−
α
∣
=
ε
→
0
|z-\alpha| = \varepsilon \to 0
∣z−α∣=ε→0时,
z
→
α
z\to \alpha
z→α ,因为
f
(
z
)
f(z)
f(z)在
D
D
D上解析,那么
lim
ε
→
0
∮
l
f
(
z
)
−
f
(
α
)
z
−
α
d
z
=
lim
ε
→
0
∮
C
ε
f
(
z
)
−
f
(
α
)
z
−
α
d
z
≤
lim
ε
→
0
2
π
max
{
∣
f
(
z
)
−
f
(
α
)
∣
}
=
0
\lim_{\varepsilon\to 0}\oint_l\frac{f(z)-f(\alpha)}{z-\alpha}dz = \lim_{\varepsilon\to 0}\oint_{C_{\varepsilon}}\frac{f(z)-f(\alpha)}{z-\alpha} dz \le \lim_{\varepsilon\to 0}2\pi\max\{|f(z)-f(\alpha)|\} = 0
ε→0lim∮lz−αf(z)−f(α)dz=ε→0lim∮Cεz−αf(z)−f(α)dz≤ε→0lim2πmax{∣f(z)−f(α)∣}=0
通常将
α
\alpha
α 记为
z
z
z,积分变量改用
ζ
\zeta
ζ 表示,于是柯西公式改写为:
f
(
z
)
=
1
2
π
i
∮
l
f
(
ζ
)
ζ
−
z
d
ζ
f(z)=\frac{1}{2\pi i}\oint_l\frac{f(\zeta)}{\zeta - z}d\zeta
f(z)=2πi1∮lζ−zf(ζ)dζ
若
f
(
z
)
f(z)
f(z) 在
l
l
l 所围的区域上存在奇点,这需要考虑挖去奇点后的复连通区域。在复连通区域上
f
(
z
)
f(z)
f(z) 解析,显然该公式仍然成立,只要将
l
l
l 理解为边界线,并且其方向均取正向:
f
(
z
)
=
1
2
π
i
∮
l
f
(
ζ
)
ζ
−
z
d
ζ
+
∑
k
=
1
n
∮
l
k
f
(
ζ
)
ζ
−
z
d
ζ
f(z)=\frac{1}{2\pi i}\oint_l \frac{f(\zeta)}{\zeta-z}d\zeta + \sum_{k=1}^n\oint_{l_k}\frac{f(\zeta)}{\zeta-z}d\zeta
f(z)=2πi1∮lζ−zf(ζ)dζ+k=1∑n∮lkζ−zf(ζ)dζ
柯西公式也可推广到适用于
l
l
l所围的区域外部以及无穷点。设
f
(
z
)
f(z)
f(z) 在闭回路
l
l
l 的外部解析,以
z
=
0
z=0
z=0 为圆心,充分大的
R
R
R 为半径,作圆
C
R
C_R
CR,使回路
l
l
l 包含于
C
R
C_R
CR 内,于是
f
(
z
)
f(z)
f(z) 在
l
l
l 及
C
R
C_R
CR 所围的复连通区域上解析,应用复连通区域上的柯西公式:
f
(
z
)
=
1
2
π
i
∮
l
f
(
ζ
)
ζ
−
z
d
ζ
+
1
2
π
i
∮
C
R
f
(
ζ
)
ζ
−
z
d
ζ
f(z)=\frac{1}{2\pi i}\oint_l\frac{f(\zeta)}{\zeta-z}d\zeta+\frac{1}{2\pi i}\oint_{C_R}\frac{f(\zeta)}{\zeta-z}d\zeta
f(z)=2πi1∮lζ−zf(ζ)dζ+2πi1∮CRζ−zf(ζ)dζ
当
R
→
∞
R\to\infty
R→∞,有:
lim R → ∞ 1 2 π i ∮ C R f ( ζ ) ζ − z d ζ = f ( ∞ ) \lim_{R\to \infty}\frac{1}{2\pi i}\oint_{C_R}\frac{f(\zeta)}{\zeta-z}d\zeta = f(\infty) R→∞lim2πi1∮CRζ−zf(ζ)dζ=f(∞)
所以:
柯西公式是复变函数理论中的重要定理之一,它表明了如果一个函数在一个闭合曲线内解析,那么函数在这个闭合曲线内的积分为零。柯西公式的数学表达为:
f
(
z
)
=
1
2
π
i
∮
l
f
(
ζ
)
ζ
−
z
d
ζ
+
f
(
∞
)
f(z) = \frac{1}{2\pi i} \oint_l \frac{f(\zeta)}{\zeta - z} d\zeta + f(\infty)
f(z)=2πi1∮lζ−zf(ζ)dζ+f(∞)
特别的当
f
(
∞
)
=
0
f(\infty) = 0
f(∞)=0 时有:
f
(
z
)
=
1
2
π
i
∮
l
f
(
ζ
)
ζ
−
z
d
ζ
f(z) = \frac{1}{2\pi i} \oint_l \frac{f(\zeta)}{\zeta - z} d\zeta
f(z)=2πi1∮lζ−zf(ζ)dζ
柯西公式得到解析函数的无穷可微性是非常显然的:设
D
D
D 是一个有界区域,其边界为
l
l
l,若函数
f
(
z
)
f(z)
f(z) 在区域
D
D
D 内解析,在闭区域
D
‾
=
D
+
l
\overline{D} = D+l
D=D+l 上连续,则
f
(
z
)
f(z)
f(z) 在区域
D
D
D 内有任意阶导数,且:
f
(
n
)
(
z
)
=
n
!
2
π
i
∮
l
f
(
ζ
)
(
ζ
−
z
)
n
+
1
d
ζ
f^{(n)}(z) = \frac{n!}{2\pi i} \oint_l \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta
f(n)(z)=2πin!∮l(ζ−z)n+1f(ζ)dζ
此外有关柯西公式还有两个推论:
- 模数原理:设 f ( z ) f(z) f(z) 在某个闭区域上解析,则 ∣ f ( z ) ∣ |f(z)| ∣f(z)∣ 只能在边界线 l l l 上取极大值。
- 刘维尔定理:如 f ( z ) f(z) f(z) 在整个复平面上解析,则称 f ( z ) f(z) f(z) 为整函数。那么有界的整函数,即 ∣ f ( z ) ∣ ≤ N |f(z)| \le N ∣f(z)∣≤N,则 f ( z ) f(z) f(z) 必为常数。