数据伦理:模型构建中的关键考量
在当今科技飞速发展的时代,数据科学和机器学习正以前所未有的速度改变着我们的生活。然而,随之而来的各种伦理问题也逐渐浮出水面。本文将通过具体案例深入探讨数据伦理的重要性,并阐述数据科学家在其中应承担的责任。
数据伦理的关键案例
为了更好地理解数据伦理,我们先来看三个具体的例子,它们分别代表了科技领域常见的伦理问题。
1. 追索流程问题 :阿肯色州有缺陷的医疗算法让患者陷入困境。《The Verge》调查发现,美国超过半数州使用的医疗福利算法软件存在问题。该算法在阿肯色州实施后,数百名患者(其中很多是重度残疾患者)的医疗福利大幅削减。例如,患有脑瘫的塔米·多布斯(Tammy Dobbs)每周的护理时长突然减少了 20 小时,且无法得到合理的解释。最终,一场官司揭示出算法软件实施存在错误,对糖尿病或脑瘫患者产生了负面影响。这些依赖医疗福利的患者始终担心福利会再次突然且毫无缘由地被削减。
2. 反馈循环问题 :YouTube 的推荐系统引发了阴谋论的泛滥。YouTube 拥有 19 亿用户,每天观看时长超过 10 亿小时,其推荐算法(由谷歌开发)旨在优化观看时间,负责约 70%的观看内容。然而,这导致了失控的反馈循环。2019 年 2 月,《纽约时报》标题“YouTube 引发阴谋论热潮,能否遏制?”揭示了这一问题。人类往往对争议性内容感兴趣,这使得推荐系统越来越多地推荐阴谋论等极端内容,导致更多极端主义者观看视频,进而使系统推荐更多极端内容,形成恶性循环。此外,YouTube 的推荐算法还曾为恋童癖者筛选出包含青春期前部分裸露儿童的家庭视频,尽管谷歌并非有意为之,但这凸显了指标驱
超级会员免费看
订阅专栏 解锁全文
840

被折叠的 条评论
为什么被折叠?



