浅谈Attention及Transformer网络

1. Transformer 模型结构

处理自然语言序列的模型有 rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer。与RNN不同的是,Transformer直接把一句话当做一个矩阵进行处理,要知道,RNN是把每一个字的Embedding Vector输入进行,隐层节点的信息传递来完成编码的工作。简而言之,Transformer 直接粗暴(后面Attention也就是矩阵的内积运算等)。

Transformer模型中采用了 encoer-decoder 架构论文中encoder层由6个encoder堆叠在一起,decoder层也一样。在这里插入图片描述

Attention 的编码,把一个输入序列 ( x 1 , . . . , x n ) (x_1,...,x_n) (x1,...,xn)表示为连续序列 z = ( z 1 , . . . , z n ) \mathbf {z} = (z_1,...,z_n) z=(z1,...,zn).给定 z \mathbf {z} z, 解码生成一个输出序列 ( y 1 , . . . , y m ) (y_1,..., y_m) (y1,...,ym). 模型每一步都是自回归的(?),即假设之前生成的结果都是作为生成下一个符号的额外输入。
TransFormer 模型使用堆叠的自注意力
(self-attention)、逐点(point-wise)、全连接层(fully connected layers).

Transformer的内部结构(图中N指数量):
在这里插入图片描述

堆叠的编码和解码
编码:编码器由 N=6 个相同的层堆叠成,每层有两个减层(sub-layers)和标准化层。
解码: 有6个相同层堆叠而成,此外,在解码堆叠中,增加自注意力减层,防止 位置出现偏差。

2. 子层Attention

NLP领域中,Attention网络基本成为了标配,是Seq2Seq的创新。Attention网络是为了解决编码器-解码器结构存在的长输入序列问题。
Attention功能可以被描述为将查询和一组键值对映射到输出,其中查询,键,值和输出都是向量。输出可以通过对查血的值加权来计算。
在这里插入图片描述

2.1 压缩的点乘注意力机制

输入:查询(query)、键(维度 d k d_k dk)、值(维度 d v d_v dv).
查询矩阵Q、键矩阵K、值矩阵V
输出:
A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T ( d k ) ) V Attention(Q,K,V)= softmax(\frac{QK^T}{\sqrt{(d_k)}})V Attention(Q,K,V)=softmax((dk) QKT)V

Attention与RNN/CNN不同,在于Attention,直接将 x t x_t xt与原来的每个词进行比较,最后算出 y t y_t yt;即
y t = f ( x t , K , V ) y_t = f(x_t, K, V) yt=f(xt,K,V)

其中,K,V为另外一个序列或矩阵;如果A=B=X,那么称为 Self Attention, 即上上式子中Q,K, V 都一样,意思就是句子对句子自己进行Attention 来查找句子中词之间的关系。

举例:

在这里插入图片描述
embedding在进入到Attention之前,有3个分叉,那表示说从1个向量,变成了3个向量Q,K,V,它是通过定义一个 W Q W^Q WQ矩阵(这个矩阵随机初始化,通过前向反馈网络训练得到),将embedding和 W Q W^Q WQ矩阵做乘法,得到查询向量 q q q,假设输入embedding是512维,在上图中我们用4个小方格表示,输出的查询向量是64维,上图中用3个小方格以示不同。然后类似地,定义 W K W^K WK W V W^V WV矩阵,将embedding和 W K W^K WK做矩阵乘法,得到键向量k;将embeding和 W V W^V WV做矩阵乘法,得到值向量 v v v。对每一个embedding做同样的操作,那么每个输入就得到了3个向量,查询向量,键向量和值向量。需要注意的是,查询向量和键向量要有相同的维度,值向量的维度可以相同,也可以不同,但一般也是相同的。

至于将获得的Q,K,V矩阵具体操作,总的来说,就是以下这幅图。
在这里插入图片描述
获得的Z和目标值进行比较,获得的损失反向传播,优化的参数是, W Q , W K , W V W^Q, W^K, W^V WQ,WK,WV.

如果做阅读理解的话,Q可以是篇章的向量序列,取K=V为问题的向量序列,那么输出就是所谓的Aligned Question Embedding。

2.2 Multi-Head Attention

M u l t i H e a d ( Q , K , V ) = C o n c a t ( h e a d 1 , . . . , h e a d h ) W O MultiHead(Q, K, V) = Concat(head_1,...,head_h)W^O MultiHead(Q,K,V)=Concat(head1,...,headh)WO

多头注意力机制,只是多做几次同样的事,然后把结果拼接。tranformer是使用了8组Attention,所以最后得到的结果是8个矩阵。

Attention本质
在这里插入图片描述
本质上Attention机制是对Source中元素的Value值进行加权求和,而QueryKey用来计算对应Value的权重系数。

如果从单个时刻来看内部的计算:
在这里插入图片描述
也就是,每个query向量根据与 value 矩阵的每个向量的相似度,进行加权得到一个新的向量。query有多少个,得到的新向量就有多少个。

2.3 masked mutil-head attention

mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。

两种masked:
padding mask

因为每个批次输入序列长度是不一样的也就是说,我们要对输入序列进行对齐。具体来说,就是给在较短的序列后面填充 0
然后,把这些填充的位置的值加上一个非常大的负数(负无穷),这样的话,经过 softmax,这些位置的概率就会接近0!
padding mask 实际上是一个张量,每个值都是一个Boolean,值为 false 的地方就是我们要进行处理的地方。

def padding_mask(seq_k, seq_q):
    # seq_k 和 seq_q 的形状都是 [B,L]
    len_q = seq_q.size(1)
    # `PAD` is 0
    pad_mask = seq_k.eq(0)
    pad_mask = pad_mask.unsqueeze(1).expand(-1, len_q, -1)  # shape [B, L_q, L_k]
    return pad_mask

Sequence mask

sequence mask 是为了使得 decoder 不能看见未来的信息。也就是对于一个序列,在 time_step 为 t 的时刻,我们的解码输出应该只能依赖于 t 时刻之前的输出,而不能依赖 t 之后的输出。因此我们需要想一个办法,把 t 之后的信息给隐藏起来。
方法:产生一个下三角矩阵,把这个矩阵作用在每一个序列上。

def sequence_mask(seq):
    batch_size, seq_len = seq.size()
    mask = torch.triu(torch.ones((seq_len, seq_len), dtype=torch.uint8),
                    diagonal=1)
    mask = mask.unsqueeze(0).expand(batch_size, -1, -1)  # [B, L, L]
    return mask

在这里插入图片描述

3. Position Embedding

在以往的Position Embedding中,基本都是根据任务训练出来的向量。Google在论文中说到他们比较过直接训练出来的位置向量和上述公式计算出来的位置向量,效果是接近的。
Position Embedding,将每个位置编号,每个编号对应一个向量,这样,Attention可以分辨出不同位置的词了。

Position Embedding:
{ P E 2 i ( p ) = s i n ( p / 1000 0 2 i / d p o s ) , P E 2 i + 1 ( p ) = c o s ( p / 1000 0 2 i / d p o s ) \left\{ \begin{array}{lr} PE_{2i}(p) = sin(p/10000^{2i/d_{pos}}), & \\ PE_{2i+1}(p) = cos(p/10000^{2i/d_{pos}}) & \end{array} \right. {PE2i(p)=sin(p/100002i/dpos),PE2i+1(p)=cos(p/100002i/dpos)

p,代表位置; i,代表维度;
使用这个公式,在于这个能更好表示相对位置。

s i n ( α + β ) = s i n α c o s β + s i n β c o s α sin({\alpha} + {\beta}) = sin{\alpha} cos{\beta} + sin{\beta} cos{\alpha} sin(α+β)=sinαcosβ+sinβcosα

c o s ( α + β ) = c o s α c o s β − s i n α s i n β cos(\alpha + \beta) = cos{\alpha}cos{\beta} - sin{\alpha}sin{\beta} cos(α+β)=cosαcosβsinαsinβ

位置可以由两个位置之间的线性变换得到。
在偶数位置,使用正弦编码,在奇数位置,使用余弦编码。

位置编码的每一个维度对应正弦曲线,波长构成了从 2 ∗ π 2*\pi 2π 10000 ∗ 2 π 10000*2\pi 100002π的等比数列。

位置编码和输入的Embedding的维度是一致的,所以,两者可以相加!

4. 子层:前馈网络Position-wise Feed Forward Networks

Encoder中和Decoder中经过Attention之后输出的n个向量(这里n是词的个数)都分别的输入到一个全连接层中,完成一个逐个位置的前馈网络。
在这里插入图片描述
在这里插入图片描述

5. Add & Norm

Transformer中每一个Self Attention层与FFN层后面都会连一个Add & Norm层。在Attention和前馈网络两个sublayer后面都接残差连接,然后进行Layer Normalization.

Add&Norm在sublayer后面都接残差连接,然后进行Layer Normalization。因此,Attention和前馈网络的输出经过Add&Norm变成了:
L a y e r N o r m ( x +  Sublayer  ( x ) ) \text LayerNorm (x+\text { Sublayer }(x)) LayerNorm(x+ Sublayer (x))

Add 是一个残差网络,残差结构能够很好的消除层数加深所带来的信息损失问题。

Normalization有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为0方差为1的数据。我们在把数据送入激活函数之前进行normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区。
在这里插入图片描述
LN 是在每一个样本上计算均值和方差:在这里插入图片描述

6. Linear+Softmax输出

在结尾再添加一个全连接层和softmax层,假如我们的词典是1w个词,那最终softmax会输入1w个词的概率,概率值最大的对应的词就是我们最终的结果。
Encoder是把整个句子作为输入,编码好了。但Decoder是逐个单词来预测的。

时间复杂度
在这里插入图片描述

7. 实践

7.1 论文实验

训练数据:
e standard WMT 2014 English-German dataset consisting of about 4.5 million
sentence pairs.

优化器:
其中,warm up step 4000.
在这里插入图片描述
规范化:
在sub_layer 和input相加之前,添加0.1 的Dropout。

7.2 个人尝试

个人对Attention的理解代码:

import numpy as np 
encoder = np.transpose([[3,12,45], [59,2,5], [1,43,5], [4,3,45.3]])
decoder = np.array([0.5, 0.1, 2])

#Score Matrix
def score(encoder, decoder):
    return np.dot(np.transpose(encoder),decoder)

scoreMatrix = score(encoder, decoder)

#softmax score matrix
def softmax(x):
#    x = np.array(x, dtype = np.float128)
    print(np.exp(x))
    print(np.sum(np.exp(x)))
    return np.exp(x)/np.sum(np.exp(x), axis = 0)
scoreSoftmax = softmax(scoreMatrix)

#multiply with encoder matrix
def multiply(x, weight):
    return np.multiply(x, weight)

weightEncoder = multiply(encoder, scoreSoftmax)

#get Attention Vector
def attentionVec(x):
    return np.sum(x, axis = 1)
att_vec = attentionVec(weightEncoder)

8. 总结

Q1: Transformer相比于RNN/LSTM,有什么优势?
A:RNN系列的模型,并行计算能力很差。RNN并行计算的问题就出在这里,因为 T 时刻的计算依赖 T-1 时刻的隐层计算结果,而 T-1 时刻的计算依赖 T-2 时刻的隐层计算结果,如此下去就形成了所谓的序列依赖关系。

Q2:为什么说Transformer可以代替seq2seq?
A:
seq2seq缺点: seq2seq最大的问题在于将Encoder端的所有信息压缩到一个固定长度的向量中,并将其作为Decoder端首个隐藏状态的输入,来预测Decoder端第一个单词(token)的隐藏状态。在输入序列比较长的时候,这样做显然会损失Encoder端的很多信息,而且Decoder端不能够关注到其想要关注的信息。

Transformer优点:transformer不但对seq2seq模型这两点缺点有了实质性的改进(多头交互式attention模块),而且还引入了self-attention模块,让源序列和目标序列首先“自关联”起来,这样的话,源序列和目标序列自身的embedding表示所蕴含的信息更加丰富,而且后续的FFN层也增强了模型的表达能力,并且Transformer 并行计算的能力 是远远超过seq2seq系列的模型,因此我认为这是transformer优于seq2seq模型的地方。

Q3: Transformer 是如何进行scale的?为什么需要scale?为什么Transformer的scale能够达到这个目的?
在这里插入图片描述
这个原论文(见参考1链接)就已经说的很清楚了。这里稍微总结下:
(1)scale的方法是处于向量维度 d k d_k dk的根号值。
(2) scale的原因是,scale前的值很大,导致了经过softmax函数后,这些值对于的梯度极小。
(3)为什么是处于 d k \sqrt{d_k} dk 呢?
假设向量q,k 的维度是 d k d_k dk,元素相互独立,且服从标准高斯分布,均值为0,方差为1, 那么容易知道 q i ∗ k j q_i*k_j qikj的均值为0,方差为1。那么一共有 d k d_k dk q i ∗ k j q_i*k_j qikj,所以, q ∗ k q*k qk的均值为0,方差为 d k d_k dk.
具体的证明可以参看transformer中的attention为什么scaled? - LinT的回答 - 知乎.


最近开通了个公众号,主要分享深度学习相关内容,NLP,推荐系统,风控等算法相关的内容,感兴趣的伙伴可以关注下。
在这里插入图片描述
公众号相关的学习资料会上传到QQ群596506387,欢迎关注。


reference:

  1. 论文 Attention is all you need;
  2. blog RNN 中的Attention;
  3. kaggle attention ;
  4. 公众号大数据文摘 transformer介绍
  5. 英文blog,非常详细,5是其译文
  6. 知乎 Transformer Pytorch实践
  7. 深度学习中的注意力机制(2017版);
  8. 一文看懂 Attention(本质原理+3大优点+5大类型)
  9. zhihu Transformer结构及其应用详解–GPT、BERT、MT-DNN、GPT-2
  10. BERT代码实现及解读;
  11. 作者:mantch 来源:掘金;
  12. bojone 《Attention is All You Need》浅读(简介+代码);
  13. [整理] 聊聊 Transformer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rosefunR

你的赞赏是我创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值