1.问题
推广成,如何证明 根号 p(p是素数)是无理数
素数:一个大于1的自然数,如果除了1和它自身外,不能被其他自然数整除(除0以外)的数称之为素数。
2.思路
反证法:
假如
(
p
)
=
a
b
\sqrt{(p)} = \frac{a}{b}
(p)=ba 其中, a, b互质的整数。
然后,
a
2
=
p
b
2
a^2 = p b^2
a2=pb2
假如
a
a
a 没有质因子 p,那么,
a
2
a^2
a2 也没有质因子 p。矛盾!
所以,
a
a
a具有质因子 p,而且
a
2
a^2
a2 具有 p 的 倍数个 质因子 p.
所以,
b
2
b^2
b2 也具有质因子 p。
再假如 b不具有质因子 p, 那么
b
2
b^2
b2 也没有质因子 p,矛盾。
从而,
b
b
b 具有质因子 p。
又因为 a, b 都含有质因子 p, 矛盾。
故 p是无理数。
3.特殊
证明根号2是无理数的解法。
参考: