如何证明根号3是无理数?------顺便说下希帕索斯和第一次数学危机

      我们都知道, 根号2是无理数, 初中数学课本给过一个非常优美的反证法。

      当年,希帕索斯发现了这个秘密,引发了第一次数学危机。毕达哥拉斯解决不了这次数学危机,就想办法解决了提出问题的人。斯帕索斯死得好惨。

 

      现在来看看, 如何证明根号3是无理数呢? 也可以采用反证法,但证明方法跟根号2就不一样了。

      来看看:

      假设:p / q = 根号3, 且p,q互质

      p^2 = 3q^2

      一个整数的平方的尾数只能是: 0,1, 4, 5, 6, 9

     所以p^2的尾数只能是:0,1, 4, 5, 6, 9

    3q^2的尾数只能是:0, 3, 2, 5, 8, 7

    根据p^2 = 3q^2可:p^2的尾数只可能是0,5    (取上述重叠部分)

    从而可知p的尾数必定是0或者5

    从而得知q^2的尾数必定对应为0或者5

    从而得知q的尾数必定对一个为0或者5

    也就是说, p和q的尾数必须同时为0或者同时为5

    显然, 这与p,q互质矛盾。

   

    这个方法很巧妙。

    不多说。

 

发布了2213 篇原创文章 · 获赞 4568 · 访问量 1978万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览