矩阵
rourouwanzi1992
这个作者很懒,什么都没留下…
展开
-
python svd法求解矩阵Ax=0最小二乘问题 拟合直线
为什么Ax=0的解是V的最后一列import numpy as np#随机矩阵 AA=np.random.randint(1,25,[3,5])u,sigma,vt = np.linalg.svd(A)print(A@ vt[-1])拟合直线:def fitline(points): #ax+by+c=0 #solve Ax =0: #ax0+by0+c=0 #ax1+by1+c=0 #ax2+by2+c=0 #... points = np.concatenate((poi原创 2022-05-13 16:26:08 · 1650 阅读 · 0 评论 -
python 实现罗德里格斯公式Rodrigues 旋转向量到旋转矩阵转化
罗德里格斯公式Rodrigues:代码:import numpy as npdef rodrigues_rotation(r, theta): # n旋转轴[3x1] # theta为旋转角度 # 旋转是过原点的,n是旋转轴 r = np.array(r).reshape(3, 1) rx, ry, rz = r[:, 0] M = np.array([ [0, -rz, ry], [rz, 0, -rx],原创 2022-05-13 14:49:51 · 2901 阅读 · 0 评论 -
python 判断矩阵是否正交
是否正交判断:#如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵import numpy as nprot_matrix = np.asarray([[ 0., -1., 0.], [ 1., 0., 0.], [ 0., 0., 1.]])print(rot_matrix @ rot_matrix.T)#正交矩阵行列式为1或-1print(np.linalg.det(rot_matrix))原创 2022-05-10 18:44:17 · 2449 阅读 · 0 评论 -
python 轴角转化为旋转矩阵 实现
import numpy as npimport mathimport scipy.linalg as linalg轴角转化为旋转矩阵公式定义:def rotate_mat(axis, radian): rot_matrix = linalg.expm(np.cross(np.eye(3), axis / linalg.norm(axis) * radian)) return rot_matrix绕x轴旋转90度:rand_axis = [1,0,0]#旋转角度r =原创 2022-05-10 18:33:14 · 2168 阅读 · 0 评论 -
python 旋转矩阵、欧拉角、四元数之间转化
import numpy as npimport mathfrom scipy.spatial.transform import Rotation as RRq=[-0.71934025092983234, 1.876085535681999e-06, 3.274841213980097e-08, 0.69465790385533299]四元数到旋转矩阵r = R.from_quat(Rq)Rm = r.as_matrix()# 0:array([ 1.00000000e+00, -2.原创 2022-05-10 18:09:42 · 2920 阅读 · 2 评论 -
python 矩阵求转置、行列式、迹、求逆
python 矩阵求解import numpy as np1、转置a=np.eye(3)print(a.T)2、各列元素和print(sum(a))3、求矩阵行列式print(np.linalg.det(a))4、数乘print(2 * a)5、迹print(a.trace())6、求逆print(np.linalg.inv(a))原创 2022-05-09 00:49:07 · 1523 阅读 · 0 评论 -
python 求向量间内积 和外积
#内积可以描述向量间的投影关系,大小为 |a| |b|cos⟨a, b⟩:python 向量内积求向量长度:import numpy as npa=np.asarray([1,1,1])print(np.sqrt(a.dot(a)))print(np.linalg.norm(a))python 求向量外积#外积的方向垂直于这两个向量,大小为 |a| |b|sin ⟨a, b⟩,是两个向量张成的四边形的#有向面积。对于外积,我们引入了 ∧ 符号,把 a 写成一个矩阵。事实上是一个反对称矩阵原创 2022-05-09 00:03:03 · 6272 阅读 · 0 评论 -
求解矩阵Ax=b最小二乘问题
Ax=b最小二乘问题lstsq的输出包括四部分:回归系数、残差平方和、自变量X的秩、X的奇异值。import numpy as npA=[[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,0,0]]b=[1,1,1,1,1]X=np.linalg.lstsq(A, b, rcond = -1)print (X[0])print(A @ X[0])...原创 2022-05-06 00:36:38 · 1478 阅读 · 0 评论 -
矩阵ax=b 求解 numpy、scipy、tensorflow 三种方法
ax=b 求解 三种方法import tensorflow.compat.v1 as tfimport numpy as npimport scipyA = np.array([ [1, 4, 7], [5, 2, 8], [9, 6, 3]])b = np.array([21, 24, 39])numpy 方法:print(np.linalg.solve(A, b))scipy 方法:print(scipy.linalg.solve(A, b))te原创 2022-05-06 00:23:08 · 1248 阅读 · 3 评论 -
python 矩阵求逆
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar原创 2022-05-06 00:15:20 · 2825 阅读 · 0 评论