最大似然估计和加权最大似然估计的渐进正态性

最大似然估计的渐近分布

记似然函数为
L ( θ ) = ∏ i = 1 n f ( X i ; θ ) L(\theta)=\prod_{i=1}^{n}f(X_i;\theta) L(θ)=i=1nf(Xi;θ)
l ( θ ) = l o g L ( θ ) l(\theta)=logL(\theta) l(θ)=logL(θ)为对数似然函数,设 θ \theta θ为真值, θ ^ \hat{\theta} θ^为最大似然估计值。则有
∂ l ( θ ^ ) ∂ θ = ∂ l ( θ ) ∂ θ + ∂ 2 l ( θ ) ∂ θ 2 ( θ ^ − θ ) = 0 \frac{\partial l(\hat{\theta})}{\partial \theta} = \frac{\partial l(\theta)}{\partial \theta}+\frac{\partial^2 l(\theta)}{\partial \theta^2}(\hat{\theta}-\theta)=0 θl(θ^)=θl(θ)+θ22l(θ)(θ^θ)=0
从而
n ( θ ^ − θ ) = − n l ′ ( θ ) l ′ ′ ( θ ) = ( 1 / n ) l ′ ( θ ) − ( 1 / n ) l ′ ′ ( θ ) \sqrt{n}(\hat{ \theta}-\theta)=-\sqrt{n}\frac{l'(\theta)}{l''(\theta)}=\frac{(1/\sqrt{n})l'(\theta)}{-(1/n)l''(\theta)} n (θ^θ)=n l′′(θ)l(θ)=(1/n)l′′(θ)(1/n )l(θ)
(i)由于
1 n l ′ ( θ ) = 1 n ∑ i ∂ l o g f ( X i ; θ ) ∂ θ = n 1 n ∑ i ∂ l o g f ( X i ; θ ) ∂ θ \begin{aligned} \frac{1}{\sqrt{n}}l'(\theta)&=\frac{1}{\sqrt{n}}\sum_i \frac{\partial log f(X_i;\theta)}{\partial \theta}\\ &=\sqrt{n}\frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\\ \end{aligned} n 1l(θ)=n 1iθlogf(Xi;θ)=n n1iθlogf(Xi;θ)
由于 E [ ∂ l o g f ( X i ; θ ) / ∂ θ = / 0 ] \mathbb{E}[\partial logf(X_i;\theta)/\partial\theta=/0] E[logf(Xi;θ)/θ=/0]以及 V [ ∂ l o g f ( X i ; θ ) / ∂ θ ] = I ( θ ) \mathbb{V}[\partial logf(X_i;\theta)/\partial\theta]=I(\theta) V[logf(Xi;θ)/θ]=I(θ)(看我之前Fisher信息矩阵的博客),进而由中心极限定理,可知
1 n ∑ i ∂ l o g f ( X i ; θ ) ∂ θ ⇝ N ( 0 , I ( θ ) / n ) \frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\rightsquigarrow N(0,I(\theta)/n) n1iθlogf(Xi;θ)N(0,I(θ)/n)
因此
n 1 n ∑ i ∂ l o g f ( X i ; θ ) ∂ θ ⇝ N ( 0 , I ( θ ) ) \sqrt{n}\frac{1}{n}\sum_i\frac{\partial log f(X_i;\theta)}{\partial \theta}\rightsquigarrow N(0,I(\theta)) n n1iθlogf(Xi;θ)N(0,I(θ))
(ii)由于
− ( 1 / n ) l ′ ′ ( θ ) = − 1 n ∑ i ∂ l o g 2 f ( X i ; θ ) ∂ θ 2 -(1/n)l''(\theta)=-\frac{1}{n}\sum_i \frac{\partial log^2 f(X_i;\theta)}{\partial \theta^2} (1/n)l′′(θ)=n1iθ2log2f(Xi;θ)
由于 E [ − ∂ l o g 2 f ( X i ; θ ) ∂ θ 2 ] = I ( θ ) E[-\frac{\partial log^2 f(X_i;\theta)}{\partial \theta^2}]=I(\theta) E[θ2log2f(Xi;θ)]=I(θ),因此
− ( 1 / n ) l ′ ′ ( θ ) → I ( θ ) -(1/n)l''(\theta)\rightarrow I(\theta) (1/n)l′′(θ)I(θ)

( 1 / n ) l ′ ( θ ) − ( 1 / n ) l ′ ′ ( θ ) ⇝ N ( 0 , I ( θ ) I ( θ ) 2 ) = N ( 0 , I ( θ ) − 1 ) \frac{(1/\sqrt{n})l'(\theta)}{-(1/n)l''(\theta)}\rightsquigarrow N(0,\frac{I(\theta)}{I(\theta)^2})=N(0,I(\theta)^{-1}) (1/n)l′′(θ)(1/n )l(θ)N(0,I(θ)2I(θ))=N(0,I(θ)1)

因此,最大似然估计量具有渐进正态分布。

下面我们证明加权最大似然估计具有渐进正态分布。

Theorem 1.(Hidetoshi, 2000)

在一定的正则条件下,即模型足够光滑等,设加权最小二乘估计器为 θ \theta θ,真实值为 θ ∗ \theta^* θ,则 n ( θ − θ ∗ ) \sqrt{n}(\theta-\theta^*) n (θθ)的渐进正态分布为 N ( 0 , H − 1 G H − 1 ) N(0,H^{-1}GH^{-1}) N(0,H1GH1),其中, H H H G G G均为 m × m m\times m m×m非奇异矩阵,定义为
G = E [ ∂ l w ( x , y ∣ θ ) ∂ θ ∣ θ ∗ ∂ l w ( x , y ∣ θ ) ∂ θ T ∣ θ ∗ ] G=E[\frac{\partial l_w(x,y|\theta)}{\partial \theta}|_{\theta^{*}}\frac{\partial l_w(x,y|\theta)}{\partial \theta^T}|_{\theta^{*}}] G=E[θlw(x,yθ)θθTlw(x,yθ)θ]

H = E [ ∂ 2 l w ( x , y ∣ θ ) ∂ θ ∂ θ T ∣ θ ∗ ] H=E[\frac{\partial^2 l_w(x,y|\theta)}{\partial \theta\partial \theta^T}|_{\theta^{*}}] H=E[θθT2lw(x,yθ)θ]

其中,
l w ( x , y ∣ θ ) = − w ( x ) l o g p ( y ∣ x , θ ) l_w(x,y|\theta)=-w(x)logp(y|x,\theta) lw(x,yθ)=w(x)logp(yx,θ)

Proof.

证明思路应该是与最大似然估计类似。

最大加权似然估计量满足
∑ i ∂ l w ( x i , y i ∣ θ ) ∂ θ ∣ θ = θ ∗ = 0 \sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}=0 iθlw(xi,yiθ)θ=θ=0
求导,有
∑ i ∂ l w ( x i , y i ∣ θ ) ∂ θ ∣ θ = θ ∗ + ∑ i ∂ 2 l w ( x i , y i ∣ θ ) ∂ θ ∂ θ ′ ∣ θ = θ ∗ ( θ − θ ∗ ) = 0 \sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}+\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}(\theta-\theta^*)=0 iθlw(xi,yiθ)θ=θ+iθθ2lw(xi,yiθ)θ=θ(θθ)=0
进一步
n 1 2 ( θ − θ ∗ ) = n − 1 / 2 n − 1 ∑ i ∂ l w ( x i , y i ∣ θ ) ∂ θ ∣ θ = θ ∗ ∑ i ∂ 2 l w ( x i , y i ∣ θ ) ∂ θ ∂ θ ′ ∣ θ = θ ∗ n^{\frac{1}{2}}(\theta-\theta^*)=\frac{n^{-1/2}}{n^{-1}}\frac{\sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*}}{\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}} n21(θθ)=n1n1/2iθθ2lw(xi,yiθ)θ=θiθlw(xi,yiθ)θ=θ
变形:
n − 1 ∑ i ∂ 2 l w ( x i , y i ∣ θ ) ∂ θ ∂ θ ′ ∣ θ = θ ∗ n 1 2 ( θ − θ ∗ ) = n − 1 / 2 ∑ i ∂ l w ( x i , y i ∣ θ ) ∂ θ ∣ θ = θ ∗ n^{-1}\sum_i \frac{\partial^2 l_w(x_i,y_i|\theta)}{\partial\theta \partial \theta'}|_{\theta=\theta^*}n^{\frac{1}{2}}(\theta-\theta^*)=n^{-1/2}\sum_i \frac{\partial l_w(x_i,y_i|\theta)}{\partial\theta}|_{\theta=\theta*} n1iθθ2lw(xi,yiθ)θ=θn21(θθ)=n1/2iθlw(xi,yiθ)θ=θ
根据中心极限定理,右侧 ⇝ N ( 0 , G ) \rightsquigarrow N(0,G) N(0,G),而左侧依据概率收敛到 H n ( θ − θ ∗ ) H\sqrt{n}(\theta-\theta^*) Hn (θθ),从而直接得到结论
n ( θ − θ ∗ ) ⇝ N ( 0 , H − 1 G H − 1 ) \sqrt{n}(\theta-\theta^*)\rightsquigarrow N(0,H^{-1}GH^{-1}) n (θθ)N(0,H1GH1)

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值