二分的基本用途是在单调序列或单调函数中做查找操作,特别注意一定要具有单调性.
整数定义域上的二分(模板):
int erfen(int l,int r){
int l=1,r=n,ans;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,l=mid+1;
else r=mid-1;
}
return ans;
}
实数域上的二分(模板):
double erfen(double l,double r){
double mid;
while(r-l>eps){
mid=(l+r)/2.0;
if(check(mid)) r=mid;
else l=mid;
}
return l;//返回l和r都行
}
eps是要确定好的精度,一般题目要求保留k位小数,则取eps=10−(k+2)10−(k+2);
有时精度不容易确定或表示,就干脆采用循环固定次数的二分方法,往往结果的精度更高(实数二分常常卡精度)
for(int i=0;i<100;i++){
double mid=(l+r)/2;
if(check(mid)) r=mid;
else l=mid;
}
二分答案:求最小值最大(或最大值最小)的问题,常常选用二分法求解,同时配合贪心,DP等其他算法检验答案的合理性(即check函数),将最优化问题转化为判定性问题;
例题:数列分段II(洛谷1182)
对于给定的一个长度为N的正整数数列A,现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小。
求最大值最小,典型的二分答案题;
#include<bits/stdc++.h>
#define LL long long
#define INF 99999999
using namespace std;
int n,m,l,r,mid;
int a[100005];
bool check(int x){//二分每段和的最大值的最小值
int sum=0,tot=1;
for(int i=0;i<n;i++){
sum+=a[i];//sum表示当前段的值的和
if(sum>x){
tot++;//tot表示分的段数,表示新开一段
sum = a[i];
}
}
if(tot>m) return 1;
//分的段数比m大的话,表示答案在更大的区间内
else return 0;
}
int main(){
scanf("%d%d",&n,&m);//n个数,分成m段
for(int i=0;i<n;i++){
scanf("%d",&a[i]);//读入n个数
r+=a[i];//r把n个数的和记录下来
l=max(l,a[i]);//l记录n个数中最大的数
//l,r就是二分的两个端点,每段和的值一定大于等于l,同时小于等于r
}
while(l<r){//二分模板
mid=(l+r)/2;
if(check(mid)==1) l=mid + 1;
else r=mid;
}
printf("%d\n",r);
return 0;}
例题:扩散(洛谷1661)
一个点每过一个单位时间就会向四个方向扩散一个距离,两个点a、b连通,记作e(a,b),当且仅当a、b的扩散区域有公共部分。连通块的定义是块内的任意两个点u、v都必定存在路径e(u,a0),e(a0,a1),…,e(ak,v)。给定平面上的n给点,问最早什么时刻它们形成一个连通块。
方法一:二分时间t,运用并查集判断连通块;
方法二:假设任意两点之间有边,相当于求所有点构成的最小生成树中最长的一条边。把两点扩散连接的时长作为边的权值,开一个结构体存边,然后用kruskal算法求最小生成树,找到其中最长的边即可。
方法一:
#include<bits/stdc++.h>
using namespace std;
long long ans;
int n;
int xx[51],yy[51],father[51];
int find(int x){
while(father[x]!=x) x=father[x];
return x;
}//并查集的查询操作,没有路径压缩优化
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&xx[i],&yy[i]);
int l=0,r=1000000000;//二分时间t可能在的区间
while(l<=r){
int mid=(l+r)/2;
for(int i=1;i<=n;i++)
father[i]=i;//初始化并查集
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++){
int dis=abs(xx[i]-xx[j])+abs(yy[i]-yy[j]);
//求出两点间的曼哈顿距离
if(dis<=mid*2){
int r1=find(i),r2=find(j);
if(r1!=r2) father[r2]=r1;
}
//因为是两个点同时扩散,所以mid*2
//表示这两个点可以连通
}
int cnt=0;//连通块的数量
for(int i=1;i<=n;i++){
if(father[i]==i) cnt++;
}//有多少个点指向自己,就有多少个连通块
if(cnt==1){
//表示时间t还可以更小,或者就是t
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%lld",ans);
return 0;
}
方法二:把题目要求转换一下,假设任意两点之间有边,相当于求所有点构成的最小生成树中最长的一条边。
把两点扩散连接的时长作为边的权值,开一个结构体存边,然后用kruskal算法求最小生成树,找到其中最长的边即可。
#include<bits/stdc++.h>
using namespace std;
struct Edge{
int x,y,val;
}edge[3000];
int father[3000];
int cnt,n,ans;
bool cmp(Edge x,Edge y){
return x.val<y.val;
}
void in(){
int x[51],y[51];
cin>>n;
for(int i=1;i<=n;i++)
cin>>x[i]>>y[i];
for(int i=1;i<=n;i++)
for(int j=1;j<i;j++){
edge[++cnt].x=i;
edge[cnt].y=j;
//建边,存图
int dis;
dis=abs(x[i]-x[j])+abs(y[i]-y[j]);
if(dis&1) edge[cnt].val=(dis>>1)+1;
else edge[cnt].val=(dis>>1);
}//把两点扩散连接的时长作为边的权值
}
int find(int x) {
if(father[x]!=x)
father[x]=find(father[x]);
return father[x];
}//并查集查询操作,路径压缩优化
void kruskal(){
int p=1;
for(int i=1;i<=n;i++)
father[i]=i;//并查集初始化
for(int i=1;i<=cnt;i++)
int u=find(edge[i].x);
int v=find(edge[i].y);
if(u!=v){
father[u]=v;
ans=max(edge[i].val,ans);
//找最长的一条边
p++;
if(p==n) return;
}
return ;
}
int main()
{
in();
sort(edge+1,edge+cnt+1,cmp);//结构体排序
kruskal();
cout<<ans<<endl;
return 0;
}