离散数学入门级概念:集合、关系、元组

本文用以回答CSDN博主「minfanphd」的原创文章。
原文链接:https://blog.csdn.net/minfanphd/article/details/116245485


习题 1: { 0 , 1 , { 0 , 1 } , { 1 , 2 } } 有几个元素? 机器学习中, 这类形式的集合有什么优点和缺点?
答:有四个元素,分别为0,1,{0,1},{1,2}。

优点:包含了各种类别的元素,可以处理多类别元素;  

缺点:此集合虽然包含种类多,但复杂度也更高,且内部元素类别不同,在运算时需要加以区分。

比如,一个集合中的元素虽然种类不同,但都包含了同一种属性,我们想凭借这个属性对他们进行分类,则需要对不同元素加以处理再提取这个属性。

习题 2: ∅ 的基数是多少? { ∅ } 呢?

答:基数的定义:就是一个集合元素的个数

①空集也是一个集合,不过他的内部元素个数为0,他的基数为0;

②这个集合包含了一个空集,在这里,这个空集为他的一个元素,所以,他的基数为1。
习题 5: 多标签学习中, 输出为一个向量,相应的学习器算不算函数呢?

答:算,多标签学习中,有输入既有输出,所以算函数。

习题 6: 元组只能表达对象的数据部分, 还是可以完整地表达? 用一个具体的程序来说明.

答:可以完整的表示。

def chengji(x,y):
    z = x + y
    return z
xiaoming = (1700110444,'电气工程及其自动化',chengji(60,60))
print (xiaoming)
print (xiaoming[0])
运行结果:(1700110444, '电气工程及其自动化', 120)
1700110444相对于字典,元组只能通过下标来找到对象的属性,如我想打印我的学号,我只能通过给他学号的下标来实现。

习题 8: 定义带权无向图.

由于本人非计算机专业出身,故须先知道图是个啥。。。

以下图的基本知识来源于:https://blog.csdn.net/yjw123456/article/details/90211563

图(Graph)是由顶点和连接顶点的边构成的离散结构。

所以图为点集V和边集E构成,可以表示为G= \left ( V ,E\right )

图还能分为有向和无向,有权与无权。

这个图是个无向图,我们可以说这张图中,有点集V = { 1 , 2 , 3 , 4 , 5 , 6 } ,边集E = { ( 1 , 2 ) , ( 1 , 5 ) , ( 2 , 3 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 ) } ,在无向图中,边(u, v)(u,v)和边 (v, u)(v,u)是一样的,因此只要记录一个就行了。也就是说方向是无关的。

这是个有向图,就是加上了方向性,顶点( u , v ) (u, v)(u,v)之间的关系和顶点( v , u ) (v,u)(v,u)之间的关系不同。例如你欠我的钱和我欠你的钱是万万不能混淆的。

加权图:与加权图对应的就是无权图,或叫等权图。如果一张图不含权重信息,我们就认为边与边之间没有差别。不过,具体建模的时候,很多时候都需要有权重,比如对中国重要城市间道路联系的建模,总不能认为从北京去上海和从北京去广州一样远(等权)。

下面来回答老师的问题,定义有权无向图。

Definition:A weighted undirected graph is a tuple G_{w}=\left ( V,E,w \right ),whereV=\left ( v_{1} ,v_{2}.......v_{n}\right )is the set of nodes,E\subseteq V\times V is the set of edge,and w :V\times V\rightarrowR^{+}\cup \left \{ 0 \right \}is the edge weight.

习题 9. 考虑  \varnothing, 重新写 Definition 6 以解决其存在的问题

Definition:A  tree is a triple triple T=\left ( V,r,p \right ),where V=\left \{ v_{1},v_{2}......v_{n}\right \}is the set of nodes,r\subset Vis the root,

and p:V\cup\left \{ \phi \right \} /\left \{ r \right \}\rightarrow V\cup \left \{ \phi \right \} is the parent function satisfying:

① \forall k\geqslant 1,p^{k}\left ( v \right )\neq v ;

\forall v\subset V\cup \left \{ \phi \right \}\setminus \left \{ r \right \},\exists 1 k\geqslant 1 ,s.t.p ^{k}\left ( v \right )=r

if V\cup \left \{ \phi \right \}=\left \{ \phi \right \},\forall k\geqslant 1,p^{k}\left ( v \right )=\phi

 

 

 



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值