离散数学-10 群与环

本文介绍了群和环的数学概念,包括半群、独异点、群的性质,如结合律、幂运算、消去律,以及子群的定义和判定定理。此外,还探讨了环的概念,包括加法和乘法的性质,以及交换环、含幺环和无零因子环的特性。
摘要由CSDN通过智能技术生成

定义10.1

(1) V=<S, >是代数系统,为二元运算,如果运算是可结合的,则称V半群.

(2) V=<S,>是半群,若eS是关于运算的单位元,则称V含幺半群,也叫做独异点. 有时也将独异点V 记作 V=<S,,e>.

(3) V=<S,>是独异点,eS关于运算的单位元,若 aSa1S,则称V. 通常将群记作G.

定义10.2 (1) 若群G是有穷集,则称G有限群,否则称为无限群. G 的基数称为群 G ,有限群G的阶记作|G|.

(2) 只含单位元的群称为平凡群. 

(3) 若群G中的二元运算是可交换的,则称G交换群阿贝尔 (Abel) .

定义10.3 G是群,aGnZ,则a n次幂.

定义10.4 G是群,aG,使得等式 ak=e 成立的最小正整数k 称为a 的阶,记作|a|=k,称 a k 阶元. 若不存在这样的正整数 k,则称 a 无限阶元.

定理10.1G 为群,则G中的幂运算满足:

(1) aG(a1)1=a

(2) a,bG(ab)1=b1a1

(3) aGanam = an+mn, mZ

(4) aG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值