1、MATLAB在材料科学与工程技术编程中的入门指南

MATLAB在材料科学与工程技术编程中的入门指南

1. 引言

世界是物质的,所有自然物体、植物、产品、机器,甚至我们自身,都是由各种材料构成。了解物质结构以及创造具有所需特性的新材料和更好材料的能力,是科学与工程领域,特别是材料科学的重要目标。在材料科学与工程(MSE)以及其他技术领域,广泛使用计算和计算机建模,为此会用到各种软件,其中MATLAB®在各种技术应用编程中变得非常普及和流行。然而,刚开始使用MATLAB®的学生、教师或MSE专家会发现,现有的MATLAB®书籍都是为广泛的专业人士设计的,没有专门针对MSE领域技术编程问题的教科书。因此,需要一本简洁、全面、易于理解且能快速获取必要工具的教材,以填补这一空白。

1.1 历史

MATLAB®语言的理论基础在20世纪70年代由数学家Cleve Moler奠定,并由后来加入的专家完善。最初,该语言旨在适配当时的数学软件包LINPACK和EISPACK。不久后,MATLAB®不仅被学生和工程师视为解决数学问题的有效工具,也适用于许多技术问题。后来,该语言用C语言重写。自20世纪80年代中期以来,商业版MATLAB®开始出现在通用软件市场。通过引入图形功能和开发面向工程的特殊工具——工具箱,MATLAB®形成了现在的模样。总体而言,MATLAB®是过去几十年中开发的现代数值方法和工程计算专用工具的独特集合。与其他软件相比,MATLAB®具有以下优势:
- 多功能性 :能够使用其易于使用的工具解决简单和复杂问题。
- 高度适应性 :通过大量面向问题的工具箱,反映出对不同工程和科学领域的高度适应性。
-

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值