考研数学-高数重要总结

极限:
  1. 间断点:
    第一类间断点:左右极限存在。分为可去间断点,跳跃间断点
    第二类间断点:左右极限至少有一个不存在
  2. 有界和无界的概念
  3. 恒等式:
    a r c t a n x + a r c t a n ( 1 x ) = π 2 ( x > 0 ) arctanx+arctan(\frac{1}{x})=\frac{\pi}{2} (x>0) arctanx+arctan(x1)=2π(x>0)
    a r c t a n x + a r c t a n ( 1 x ) = − π 2 ( x < 0 ) arctanx+arctan(\frac{1}{x})=-\frac{\pi}{2} (x<0) arctanx+arctan(x1)=2π(x<0)
  4. 三角函数
    和积化差: s i n x c o s y = 1 2 [ s i n ( x + y ) + s i n ( x − y ) ] sinxcosy=\frac{1}{2}[sin(x+y)+sin(x-y)] sinxcosy=21[sin(x+y)+sin(xy)]
  5. 有限个无穷小的和,积不一定是无穷小
  6. ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + o ( x 2 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha -1)}{2}x^2+o(x^2) (1+x)α=1+αx+2α(α1)x2+o(x2)
可导性
  1. f ( x ) f(x) f(x)可导:
    f ( x 0 ) ≠ 0 , 则 ∣ f ( x 0 ) ∣ 可 导 < = > f ( x 0 ) 可 导 f(x_0)≠0,则|f(x_0)|可导<=>f(x_0)可导 f(x0)=0f(x0)<=>f(x0)
    f ( x 0 ) = 0 , 则 ∣ f ( x 0 ) ∣ 可 导 < = > f ′ ( x 0 ) = 0 f(x_0)=0,则|f(x_0)|可导<=>f'(x_0)=0 f(x0)=0f(x0)<=>f(x0)=0

  2. 复合函数连续性问题:
    ϕ ( x ) \phi(x) ϕ(x) x = x 0 x=x_0 x=x0连续, f ( u ) f(u) f(u) u = u 0 = ϕ ( x 0 ) u=u_0=\phi(x_0) u=u0=ϕ(x0)连续,则 f ( ϕ ( x ) ) f(\phi(x)) f(ϕ(x)) x = x 0 x=x_0 x=x0连续,其他结论都是不确定的。

  3. ∫ 0 x f ( t ) d t + ∫ − x 0 f ( t ) d t 的 周 期 性 与 f ( x ) 相 同 \int_0^xf(t)dt+\int_{-x}^0f(t)dt的周期性与f(x)相同 0xf(t)dt+x0f(t)dtf(x)(理解:原式= ∫ 0 x f ( t ) d t − ∫ 0 x f ( − t ) d t = ∫ 0 x [ f ( t ) − f ( − t ) ] d t \int_0^xf(t)dt-\int_0^xf(-t)dt=\int_0^x[f(t)-f(-t)]dt 0xf(t)dt0xf(t)dt=0x[f(t)f(t)]dt,由于被积函数是奇函数,f(t)和f(-t)均是以T为周期的函数,故被积函数也是以T为周期,则 ∫ 0 T [ f ( t ) − f ( − t ) ] d t = ∫ − T 2 T 2 ( f ( t ) − f ( − t ) ) = 0 \int_0^T[f(t)-f(-t)]dt=\int_{\frac{-T}{2}}^{\frac{T}{2}}(f(t)-f(-t))=0 0T[f(t)f(t)]dt=2T2T(f(t)f(t))=0

  4. 局部不能推全部(秒杀选择)

  5. 导函数在有限区间有界,则函数有解(选择判断是否有界),反之不正确,比如 x \sqrt{x} x

  6. ∫ a b \int_a^b ab发散,不能说明 ∫ a x \int_a^x ax发散,比如 ∫ a x = 1 x − b \int_a^x=\frac{1}{x-b} ax=xb1,则有 ∫ a b \int_a^b ab发散,但是实际 ∫ a x = 1 x − b \int_a^x=\frac{1}{x-b} ax=xb1存在。

  7. 任意的常数 α > 0 , 与 β \alpha>0,与\beta α>0,β,有 lim ⁡ x − > 0 + x α l n β x = 0 \lim_{x->0^+}{x^{\alpha}ln^{\beta}x}=0 limx>0+xαlnβx=0

  8. l n ′ ( ∣ x ∣ ) = 1 x ln'(|x|)=\frac{1}{x} ln(x)=x1

  9. 导数存在的充要条件:左导=右导

  10. 微分的概念

  11. 若导数的定义极限存在,则f’(x0)存在

  12. 函数的导数在某点的导数不存在仍然可能可导,定义求解/取极限

  13. 高阶导数的计算公式

  14. y=f(x)有反函数g(x),则:f’(x)g’(y)=1

导数
  1. 原函数存在条件:连续或者震荡间断点可能存在原函数
  2. 可积的条件:连续||有限个第一类间断点||有界且有限个间断点||单调有界
  3. 对称区间上的定积分:
    ∫ − a a f ( x ) d x = 1 2 ∫ − a a [ f ( x ) + f ( − x ) ] d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^{a}f(x)dx=\frac{1}{2}\int_{-a}^{a}[f(x)+f(-x)]dx=\int_{0}^{a}[f(x)+f(-x)]dx aaf(x)dx=21aa[f(x)+f(x)]dx=0a[f(x)+f(x)]dx
级数
  1. 级数求和公式:
    整数求和:
    Σ n = 0 + i n f x n = 1 1 − x , ( − 1 , 1 ) \Sigma_{n=0}^{+inf}x^n=\frac{1}{1-x},(-1,1) Σn=0+infxn=1x1,(1,1)
    Σ n = 0 + i n f ( n + 1 ) x n = 1 ( 1 − x ) 2 , ( − 1 , 1 ) \Sigma_{n=0}^{+inf}(n+1)x^n=\frac{1}{(1-x)^2},(-1,1) Σn=0+inf(n+1)xn=(1x)21,(1,1)
    Σ n = 0 + i n f ( n + 2 ) ( n + 1 ) x n = 2 ( 1 − x ) 3 , ( − 1 , 1 ) \Sigma_{n=0}^{+inf}(n+2)(n+1)x^n=\frac{2}{(1-x)^3},(-1,1) Σn=0+inf(n+2)(n+1)xn=(1x)32,(1,1)
    含有分式:
    Σ n = 0 + i n f x n + 1 n + 1 = − l n ( 1 − x ) , [ − 1 , 1 ) \Sigma_{n=0}^{+inf}\frac{x^{n+1}}{n+1}=-ln(1-x),[-1,1) Σn=0+infn+1xn+1=ln(1x),[1,1)
    Σ n = 0 + i n f x 2 n + 1 2 n + 1 = 1 2 l n 1 + x 1 − x , [ − 1 , 1 ] \Sigma_{n=0}^{+inf}\frac{x^{2n+1}}{2n+1}=\frac{1}{2}ln\frac{1+x}{1-x},[-1,1] Σn=0+inf2n+1x2n+1=21ln1x1+x,[1,1]
    Σ n = 0 + i n f ( − 1 ) n x 2 n + 1 2 n + 1 = a r c t a n x , [ − 1 , 1 ] \Sigma_{n=0}^{+inf}\frac{(-1)^nx^{2n+1}}{2n+1}=arctanx,[-1,1] Σn=0+inf2n+1(1)nx2n+1=arctanx,[1,1]
    阶乘型:
    Σ n = 0 i n f ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = s i n x , ( − i n f , i n f ) \Sigma_{n=0}^{inf}\frac{(-1)^nx^{2n+1}}{(2n+1)!}=sinx,(-inf,inf) Σn=0inf(2n+1)!(1)nx2n+1=sinx,(inf,inf)
    Σ n = 0 i n f ( − 1 ) n x 2 n ( 2 n ) ! = c o s x , ( − i n f , i n f ) \Sigma_{n=0}^{inf}\frac{(-1)^nx^{2n}}{(2n)!}=cosx,(-inf,inf) Σn=0inf(2n)!(1)nx2n=cosx,(inf,inf)
    Σ n = 0 i n f x n n ! = e x , ( − i n f , i n f ) \Sigma_{n=0}^{inf}\frac{x^{n}}{n!}=e^x,(-inf,inf) Σn=0infn!xn=ex,(inf,inf)

  2. 正项级数敛散性:
    充要条件(首先看!!!):级数收敛,等价于和函数有上界
    比较法 u n < = v n u_n<=v_n un<=vn
    比较法的极限形式 lim ⁡ n − > i n f u n v n = l \lim_{n->inf} \frac{u_n}{v_n}=l limn>infvnun=l (与0比较,等价替换的应用)
    比值法: lim ⁡ n − > i n f u n + 1 u n = l \lim_{n->inf} \frac{u_{n+1}}{u_n}=l limn>infunun+1=l (与1比较)
    根值法 lim ⁡ n − > i n f u n n \lim_{n->inf} \sqrt[n]{u_n} limn>infnun (与1比较)
    积分判别法:非负函数 [ 1 , i n f ] [1,inf] [1,inf]上单减,正项级数和反常 ∫ 1 i n f f ( x ) d x \int _{1}^{inf} f(x)dx 1inff(x)dx 积分同收敛性
    总结:使用自己的,都是和1比较,不然就是和0比较

  3. 莱布尼兹的条件:单调趋于0,是充分非必要条件

  4. 条件收敛:加绝对值发散,原级数收敛

  5. Σ n = 1 i n f ∣ u n ∣ \Sigma_{n=1}^ {inf}|u_n| Σn=1infun发散,一般不能判定 Σ n = 1 i n f u n \Sigma_{n=1}^ {inf}u_n Σn=1infun发散(可能条件收敛),但是如果是通过自我比较1得到发散的,则可以确定 Σ n = 1 i n f u n \Sigma_{n=1}^ {inf}u_n Σn=1infun发散,因为此时 lim ⁡ n − > i n f ∣ u n ∣ \lim_{n->inf}|u_n| limn>infun!=0,由必要条件可以知道,必然发散;

  6. 条件收敛和绝对收敛的关系:条+条=条;条+绝=条

  7. lim ⁡ n − > i n f u n 存 在 \lim_{n->inf} u_n存在 limn>infun等价 Σ n = 1 i n f ( u n − u n + 1 ) 收 敛 \Sigma_{n=1}^{inf} (u_n-u_{n+1})收敛 Σn=1inf(unun+1),例如,判断: Σ n = 1 i n f ( 1 n − 1 n + 1 ) \Sigma_{n=1}^{inf} (\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}) Σn=1inf(n 1n+1 1)

  8. 交错级数不满足莱布尼兹准则的,考虑用定义性质
    例如: ( − 1 ) n n + ( − 1 ) n 发 散 \frac{(-1)^n}{\sqrt n+(-1)^n} 发散 n +(1)n(1)n ( − 1 ) n n + ( − 1 ) n \frac{(-1)^n}{\sqrt{n+(-1)^n}} n+(1)n (1)n收敛, S 2 n S_{2n} S2n是单调递减数列,且 S 2 n > − 1 2 , S 2 n S_{2n}>-\frac{1}{\sqrt 2},S_{2n} S2n>2 1,S2n有下界, lim ⁡ S n = S \lim S_n=S limSn=S所以收敛

  9. 数项级数的敛散性证明通常使用比较法

  10. 抽象级数敛散性判断:
    发+发=不确定
    正发+正发=正发

  11. 抽象结论:
    Σ n = 1 u n 收 敛 , Σ n = 1 ∣ v n ∣ 收 敛 , 则 Σ n = 1 ∣ u n v n ∣ 收 敛 \Sigma_{n=1}u_n收敛,\Sigma_{n=1}|v_n|收敛,则\Sigma_{n=1}|u_nv_n|收敛 Σn=1unΣn=1vnΣn=1unvn(比较审敛)
    Σ n = 1 u n 收 敛 , 则 Σ n = 1 ( v n + u n ) 收 敛 , 则 Σ n = 1 ( v n − u n ) 收 敛 \Sigma_{n=1}u_n收敛,则\Sigma_{n=1}(v_n+u_n)收敛,则\Sigma_{n=1}(v_n-u_n)收敛 Σn=1unΣn=1vn+unΣn=1vnun
    Σ n = 1 ( − 1 ) n − 1 u n 收 敛 ( u n > 0 ) , Σ n = 1 ( u 2 n − 1 − u 2 n ) 收 敛 , 即 交 错 级 数 收 敛 , 加 括 号 后 级 数 收 敛 \Sigma_{n=1}(-1)^{n-1}u_n收敛(u_n>0),\Sigma_{n=1}(u_{2n-1}-u_{2n})收敛,即交错级数收敛,加括号后级数收敛 Σn=1(1)n1un(un>0)Σn=1(u2n1u2n),
    Σ n = 1 u n 收 敛 ( \Sigma_{n=1}u_n收敛( Σn=1unu_n>=0 ) , 则 Σ n = 1 u n 2 收 敛 , Σ n = 1 u n u n + 1 收 敛 , Σ n = 1 u n n 收 敛 ),则\Sigma_{n=1}u_n^2收敛,\Sigma_{n=1} \sqrt{u_nu_{n+1}}收敛,\Sigma_{n=1} \sqrt{\frac{u_n}{n}}收敛 Σn=1un2,Σn=1unun+1 Σn=1nun (比较审敛)

  12. 收敛区间,收敛域

  13. 幂级数的运算:
    加法法则
    R 1 ! = R 2 时 , R = m i n R 1 , R 2 R_1!=R_2时,R=min{R_1,R_2} R1!=R2R=minR1,R2
    R 1 = = R 2 时 , R > = m i n R 1 , R 2 R_1==R_2时,R>=min{R_1,R_2} R1==R2R>=minR1,R2
    乘法法则
    R = m i n R 1 , R 2 R=min{R_1,R_2} R=minR1,R2

  14. 傅里叶级数:
    f ( x ) f(x) f(x)~ a 0 2 + Σ n = 1 i n f ( a n c o s ( n x ) + b n s i n ( n x ) ) \frac{a_0}{2}+\Sigma_{n=1}^{inf}(a_ncos(nx)+b_nsin(nx)) 2a0+Σn=1inf(ancos(nx)+bnsin(nx))
    a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx a0=π1ππf(x)dx
    a n = 1 π ∫ − π π f ( x ) c o s ( n x ) d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cos(nx)dx an=π1ππf(x)cos(nx)dx
    a n = 1 π ∫ − π π f ( x ) s i n ( n x ) d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sin(nx)dx an=π1ππf(x)sin(nx)dx

积分应用总结

三重积分:

  1. 奇偶数对称性:区域对称,带入f相消或者加倍
  2. 轮换对称性:关于直线a=b对称,则f中a,b可互换
  3. 三重积分的一般换元法:雅可比行列式
  4. 球面坐标法:
    x = r s i n φ c o s θ x=rsin\varphi cos\theta x=rsinφcosθ
    y = r s i n φ s i n θ y=rsin\varphi sin\theta y=rsinφsinθ
    z = r c o s φ z=rcos\varphi z=rcosφ
    ∣ J ∣ = r 2 s i n φ |J|=r^2sin\varphi J=r2sinφ
  5. 转动惯量: I x = ∫ ∫ ∫ ( y 2 + z 2 ) ρ ( x , y , z ) d V I_x=\int\int\int(y^2+z^2)\rho(x,y,z)dV Ix=(y2+z2)ρ(x,y,z)dV

第二型曲线积分:
6. ∫ L P ( x , y ) d x + Q ( x , y ) d y \int_L P(x,y)dx+Q(x,y)dy LP(x,y)dx+Q(x,y)dy
规定正方向:当沿L正方向走的时候,区域D在人的左侧
7. 第一型和第二型曲线的关系:
( d s ) 2 = ( d x ) 2 + ( d y ) 2 (ds)^2=(dx)^2+(dy)^2 (ds)2=(dx)2+(dy)2
d x = d s ∗ c o s α , d y = d s ∗ c o s β dx=ds*cos\alpha,dy=ds*cos\beta dx=dscosα,dy=dscosβ
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ L [ P ( x , y ) c o s α + Q ( x , y ) c o s β ] d s \int_L P(x,y)dx+Q(x,y)dy=\int_L[P(x,y)cos\alpha+Q(x,y)cos\beta]ds LP(x,y)dx+Q(x,y)dy=L[P(x,y)cosα+Q(x,y)cosβ]ds

重要放缩不等式
  1. x x + 1 < l n ( x + 1 ) < x \frac{x}{x+1}<ln(x+1)<x x+1x<ln(x+1)<x
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值