高等数学总结(一)

函数

定义

邻域

δ > 0 \delta>0 δ>0,实数集 U δ ( x 0 ) = { x ∣ x − x 0 ∣ < δ } U_\delta(x_0)=\{x|x-x_0|<\delta\} Uδ(x0)={xxx0<δ}称为 x 0 x_0 x0 δ \delta δ邻域。

函数

设有两个变量 x 与 y x与y xyX是一个非空的实数集,若存在一个对应规则 f f f,使得对于每一个 x ∈ X x\in\bm{X} xX,按照这个规则, y y y有唯一确定的实数值与之对应,则称 f f f是定义在 X \bm{X} X上的一个函数。

隐函数

设x在某数集 X \bm{X} X内每取一个值时,由方程 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0可唯一确定一个y的值,则称由 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0确定一个隐函数 y y y,虽然不一定能将 y y y明显解出。

参数式表示的函数

x = x ( t ) , y = y ( t ) x=x(t),y=y(t) x=x(t),y=y(t).若 x x x在某数集 X \bm{X} X内每取一个值时,由 x = x ( t ) x=x(t) x=x(t)可唯一确定一个 t t t的值,并且对于此 t t t,由 y = y ( t ) y=y(t) y=y(t)可唯一确定一个 y y y的值,则称由参数式 x = x ( t ) , y = y ( t ) x=x(t),y=y(t) x=x(t),y=y(t)确定了 y 为 x y为x yx的函数。

函数的单调性

设 函 数 f ( x ) 在 数 集 X 上 有 定 义 , 如 果 对 于 任 意 的 x 1 ∈ X , x 2 ∈ X , 且 x 1 < x 2 , 就 一 定 有 设函数f(x)在数集\bm{X}上有定义,如果对于任意的x_1\in\bm{X},x_2\in\bm{X},且x_1<x_2,就一定有 f(x)Xx1X,x2X,x1<x2,
f ( x 1 ) ≤ f ( x 2 ) , ( f ( x 1 ) ≥ f ( x 2 ) ) f(x_1)\le f(x_2),(f(x_1)\ge f(x_2)) f(x1)f(x2),(f(x1)f(x2))
则称 f ( x ) 在 X 上 是 单 调 增 加 ( 减 小 ) 的 。 f(x)在\bm{X}上是单调增加(减小)的。 f(x)X

函数的奇偶性

设 函 数 f ( x ) 在 对 称 于 原 点 的 某 数 集 X 上 有 定 义 , 并 且 对 于 任 意 x ∈ X , 必 有 f ( − x ) = f ( x ) ( f ( − x ) = − f ( x ) ) 设函数f(x)在对称于原点的某数集\bm{X}上有定义,并且对于任意x\in\bm{X},必有f(-x)=f(x)(f(-x)=-f(x)) f(x)XxXf(x)=f(x)(f(x)=f(x)),则称f(x)在X上是偶(奇)函数。

函数的周期性

设 f ( x ) 的 定 义 域 是 数 集 X , 如 果 存 在 常 数 T > 0 , 当 x ∈ X 时 , 有 x ± T ∈ X , 并 且 设f(x)的定义域是数集\bm{X},如果存在常数T>0,当x\in\bm{X}时,有x\pm{T}\in\bm{X},并且 f(x)XT>0,xXx±TX, f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x),则称 f ( x ) f(x) f(x)为周期函数。

函数的有界性

设函数 f ( x ) f(x) f(x)在数集 X X X上有定义,如果存在常数 M M M,当 x ∈ X x\in{X} xX f ( x ) ≤ M f(x)\le{M} f(x)M,则称 f ( x ) f(x) f(x) X X X上有上界;如果存在 m m m,当 x ∈ X x\in{X} xX f ( x ) ≥ m f(x)\ge{m} f(x)m,则称 f ( x ) f(x) f(x) X X X上有下界;如果 f ( x ) f(x) f(x) X X X上既有上界又有下界,则称 f ( x ) f(x) f(x) X X X上有界。

反函数

y = f ( x ) y=f(x) y=f(x)的定义域为 X X X,值域为 Y Y Y.如果对 Y Y Y内的每一个 y y y,由 y = f ( x ) y=f(x) y=f(x)可以确定唯一的 x ∈ X x\in{X} xX.这样在 Y Y Y上定义了一个函数,称为 y = f ( x ) y=f(x) y=f(x)的反函数,记为 x = f − 1 ( x ) x=f^{-1}(x) x=f1(x) x = φ ( y ) , y ∈ Y . x=\varphi(y),y\in{Y}. x=φ(y),yY.

复合函数

设函数 y = f ( u ) y=f(u) y=f(u)的定义域是 D f D_f Df,函数 u = φ ( x ) u=\varphi(x) u=φ(x)的定义域是 D φ D_\varphi Dφ,值域是 R φ R_\varphi Rφ.若 D f ⋂ R φ ≠ Ø D_f\bigcap{R_\varphi}\ne\text{\O} DfRφ=Ø,则称函数 y = f ( φ ( x ) ) y=f(\varphi(x)) y=f(φ(x))为复合函数,它的定义域是{ x ∣ x ∈ D φ 且 φ ( x ) ∈ D f x|x\in{D_\varphi}且\varphi(x)\in{D_f} xxDφφ(x)Df}.

基本初等函数

常值函数
幂函数
指数函数
对数函数
三角函数
反三角函数

初等函数

由基本初等函数经有限次加减乘除及复合而成并用一个式子表示的函数称为初等函数。

性质、定理、公式

  1. 反函数和原函数关于y=x对称。
  2. 只有定义域关于原点对称的函数才能讨论奇偶性。
  3. 多个奇函数之和为奇函数;多个偶函数之和为偶函数。
  4. 2k个奇函数的乘积是偶函数;2k+1个奇函数的乘积是奇函数;任意个偶函数的乘积还是偶函数。(k=0,1,2…)。
  5. 任意定义在对称于原点的数集 X X X上的函数 f ( x ) f(x) f(x),必可分解成一奇一偶函数之和:
    f ( x ) = 1 2 [ f ( x ) − f ( − x ) ] + 1 2 [ f ( x ) + f ( − x ) ] f(x)={1 \over 2}[f(x)-f(-x)]+{1 \over 2}[f(x)+f(-x)] f(x)=21[f(x)f(x)]+21[f(x)+f(x)]
  6. 如果 f ( x ) f(x) f(x)是周期函数,周期为 T T T,则 f ( a x + b ) f(ax+b) f(ax+b)也是周期函数,周期为 ∣ T / a ∣ |T/a| T/a
  7. 一切初等函数在其定义域内都是连续的。

极限

定义·

数列的极限

数列 u n {u_n} un与常数A,如果他们之间满足下列关系:“对于任意给定的 ε > 0 \varepsilon>0 ε>0,存在正整数 N > 0 N>0 N>0,当 n > N n>N n>N时,就有 ∣ u n − A ∣ < ε |u_n-A|<\varepsilon unA<ε”,则称数列 u n {u_n} un收敛,且收敛于 A A A,记为 lim ⁡ n → inf ⁡ u n = A \lim\limits_{n\to{\inf}}u_n=A ninflimun=A

函数的极限

记号定义表述
lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to{\infin}}f(x)=A xlimf(x)=A对于任给 ε > 0 \varepsilon>0 ε>0,存在 X > 0 X>0 X>0,当 ∣ x ∣ > X \lvert{x}\rvert>X x>X时,就有 ∣ f ( x ) − A ∣ < ε \lvert{f(x)-A}\rvert<\varepsilon f(x)A<ε
lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to{x_0}}f(x)=A xx0limf(x)=A对于任给 ε > 0 \varepsilon>0 ε>0,存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<\lvert{x-x_0}\rvert<\delta 0<xx0<δ时,就有 ∣ f ( x ) − A ∣ < ε \lvert{f(x)-A}\rvert<\varepsilon f(x)A<ε

无穷小与无穷大

无穷小:若 lim ⁡ x → ♡ f ( x ) = 0 \lim\limits_{x\to\hearts}f(x)=0 xlimf(x)=0,则称 x → ♡ x\to\hearts x f ( x ) f(x) f(x)为无穷小。(这里的 ♡ \hearts 可以是 x 0 或 x 0 + , x 0 − 或 ∞ , + ∞ , − ∞ x_0或x_0^{+},x_0^{-}或\infin,+\infin,-\infin x0x0+,x0,+,,下同)
无穷大:

记号定义表述
lim ⁡ x → ∞ f ( x ) = ∞ \lim\limits_{x\to{\infin}}f(x)=\infin xlimf(x)=对于任给 M > 0 M>0 M>0,存在 X > 0 X>0 X>0,当 ∣ x ∣ > X \lvert{x}\rvert>X x>X时,就有 ∣ f ( x ) ∣ > M \lvert{f(x)}\rvert>M f(x)>M
lim ⁡ x → x 0 f ( x ) = ∞ \lim\limits_{x\to{x_0}}f(x)=\infin xx0limf(x)=对于任给 M > 0 M>0 M>0,存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<\lvert{x-x_0}\rvert<\delta 0<xx0<δ时,就有 ∣ f ( x ) ∣ > M \lvert{f(x)}\rvert>M f(x)>M

无穷小的比较:
来源网络

重要性质、定理、公式

极限存在充要条件

lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to{x_0}}f(x)=A xx0limf(x)=A的充要条件是 f ( x 0 − ) = f ( x 0 + ) = A . f(x_0^{-})=f(x_0^{+})=A. f(x0)=f(x0+)=A.

数列存在的充要条件

lim ⁡ n → ∞ u n = A \lim\limits_{n\to\infin}u_n=A nlimun=A的充要条件是 lim ⁡ n → ∞ u 2 n = lim ⁡ n → ∞ u 2 n − 1 = A . \lim\limits_{n\to\infin}u_{2n}=\lim\limits_{n\to\infin}u_{2n-1}=A. nlimu2n=nlimu2n1=A.

极限的唯一性

lim ⁡ x → ♡ f ( x ) \lim\limits_{x\to\hearts}f(x) xlimf(x)存在,则此极限值必唯一。

存在极限与无穷小的关系

lim ⁡ x → ♡ f ( x ) = A \lim\limits_{x\to{\hearts}}f(x)=A xlimf(x)=A的充要条件是 f ( x ) − A = α ( x ) , lim ⁡ x → ♡ α ( x ) = 0. f(x)-A=\alpha(x),\lim\limits_{x\to\hearts}\alpha(x)=0. f(x)A=α(x),xlimα(x)=0.

保号性

lim ⁡ x → ♡ f ( x ) = A , A ≠ 0 , \lim\limits_{x\to{\hearts}}f(x)=A,A\ne{0}, xlimf(x)=A,A=0,则存在 ♡ \hearts 的一个去心邻域,在此邻域内 f ( x ) 与 A f(x)与A f(x)A同号。
推论:设存在 ♡ \hearts 的一个去心邻域,在此邻域内 f ( x ) ≥ 0 ( 或 f ( x ) ≤ 0 ) , f(x)\ge{0}(或f(x)\le{0}), f(x)0(f(x)0), lim ⁡ x → ♡ f ( x ) = A \lim\limits_{x\to{\hearts}}f(x)=A xlimf(x)=A,则 A ≥ 0 ( ≤ 0 ) 。 A\ge{0}(\le{0})。 A0(0)

夹逼定理和单调有界定理

来源于李永乐考研复习

常用的等价无穷小

来源于网络

极限四则运算

在这里插入图片描述

等价无穷小替换

来源于网络

洛必达法则

在这里插入图片描述

函数的连续与间断

定义

函数在一点处连续

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0的某邻域 U ( x 0 ) U(x_0) U(x0)有定义,且
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , \lim\limits_{x\to{x_0}}f(x)=f(x_0), xx0limf(x)=f(x0),
则称 f ( x ) 在 x = x 0 处 连 续 f(x)在x=x_0处连续 f(x)x=x0.

函数在(a,b)内、[a,b]上连续

f ( x ) 在 ( a , b ) f(x)在(a,b) f(x)(a,b)内的每一点都连续,则称 f ( x ) 在 ( a , b ) 内 连 续 。 f(x)在(a,b)内连续。 f(x)(a,b)
(在[a,b]上连续时,在 x = a x=a x=a处指的是右连续,在 x = b x=b x=b处指的是左连续。)

第一类间断点

可去间断点
跳跃间断点

第二类间断点

左右极限至少有一个不存在
包括无穷间断点、振荡间断点等。

性质、定理、公式

  1. 初等函数的连续性
    i. 基本初等函数在相应的定义域内连续。
    ii. 区间I上的连续函数做四则运算形成的新函数在I上仍然是连续函数。
    iii. 连续函数经过有限次的复合仍为连续函数。
    iv. 原函数连续且单调,反函数必为连续且单调。
    v. 一切初等函数在相应定义区间内连续。
  2. 闭区间连续函数的性质
    如果f(x)在[a,b]连续,则:
    i. f(x)在[a,b]有界(有界性定理)。
    ii. 有最大最小值(最值定理)
    iii. m和M分别为区间上的最小值和最大值, m ≤ μ ≤ M m\le{\mu}\le{M} mμM,则区间内必存在一点 x 0 x_0 x0使得 f ( x 0 ) = μ f(x_0)=\mu f(x0)=μ(介值定理)
    iv. f(a)*f(b)<0,a、b之间必有零点。(零点定理)
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值