2.2.泰勒公式、函数极值、积分
2.2.1.泰勒公式
这个定理就是任意一个函数f(x),都可以在展开,写成一个多项式的模式,最后一项就是误差,是x到的高阶无穷小(佩亚诺余项)。
这项也叫:拉格朗日余项
当时,称为麦克劳林展开
2.2.2.函数的凹凸性
上述定理的几何意义
2.2.3.函数的极值
2.2.4.不定积分(求原函数)
2.2.5.换元积分法
第一类换元法(凑微分)
第二类换元法
2.2.6.分部积分法
公式:
也可表述为:
也可表述为:
2.2.7.定积分
定积分的意义:曲边形的面积
牛顿莱布尼茨公式
换元法:
分部积分法: