微积分:2.2泰勒公式函数极值定积分


本课程来自 深度之眼,部分截图来自课程视频。
【第二章 微积分】2.2泰勒公式函数极值定积分
在线LaTeX公式编辑器

任务详解:

这节课主要介绍了泰勒公式,函数的凹凸性,函数的极值,不定积分,定积分等知识点。
掌握目标:
1、了解泰勒公式
2、了解函数的凹凸性
3、掌握函数的极值,以及极值的充要条件
4、掌握不定积分,定积分的计算,第一第二类换元,分部积分法,牛顿莱布尼茨公式

1.泰勒公式

泰勒(Taylor)中值定理1:如果函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有n阶导数,那么存在 x 0 x_0 x0的一个邻域,对于该邻域内的任一 x x x,有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{n}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2+...+n!fn(x0)(xx0)n+Rn(x)
其中:
R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^n) Rn(x)=o((xx0)n)
说人话:这个定理就是任意一个函数 f ( x ) f(x) f(x),都可以在 x 0 x_0 x0展开,写成一个多项式的模式,最后一项就是误差 R n ( x ) R_n(x) Rn(x),是x到 x 0 x_0 x0的高阶无穷小(佩亚诺余项)。
泰勒(Taylor)中值定理2:如果函数 f ( x ) f(x) f(x) x 0 x_0 x0的某个邻域 U ( x 0 ) U(x_0) U(x0)内具有(n+1)阶导数,那么对任一 x ∈ U ( x 0 ) x\in U(x_0) xU(x0),有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . + f n ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{n}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2+...+n!fn(x0)(xx0)n+Rn(x)
其中:
R n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!fn+1(ξ)(xx0)n+1
ξ \xi ξ x 0 x_0 x0 x x x之间的某个值,这项也叫:拉格朗日余项
当×0=0时,称为麦克劳林展开
例子(略)

2.函数的凹凸性

定义:设 f ( x ) f(x) f(x)在区间 I I I上连续,如果对 I I I上任意两点 x 1 , x 2 x_1,x_2 x1,x2恒有
f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f\left(\frac{x_1+x_2}{2}\right)<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
那么称 f ( x ) f(x) f(x) I I I上的图形是(向上)凹的(或凹弧);如果恒有
f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f\left(\frac{x_1+x_2}{2}\right)>\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)>2f(x1)+f(x2)
那么称 f ( x ) f(x) f(x) I I I上的图形是(向上)凸的(或凸弧).
如果函数 f ( x ) f(x) f(x) I I I内具有二阶导数,那么可以利用二阶导数的符号来判定曲线的凹凸性,这就是下面的曲线凹凸性的判定定理:
定理2:设 f ( x ) f(x) f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么
(1)若在(a,b)内 f n ( x ) > 0 f^n(x)>0 fn(x)>0,则 f ( x ) f(x) f(x)在[a,b]上的图形是凹的;
(2)若在(a,b)内 f n ( x ) < 0 f^n(x)<0 fn(x)<0,则 f ( x ) f(x) f(x)在[a,b]上的图形是凸的.
证明:
x 1 x_1 x1 x 2 x_2 x2为[a,b]类任意两点,且 x 1 < x 2 x_1<x_2 x1<x2,记 x 1 + x 2 2 = x 0 \frac{x_1+x_2}{2}=x_0 2x1+x2=x0,并记 x 2 − x 0 = x 0 − x 1 = h x_2-x_0=x_0-x_1=h x2x0=x0x1=h,则 x 1 = x 0 − h x_1=x_0-h x1=x0h x 2 = x 0 + h x_2=x_0+h x2=x0+h
在这里插入图片描述
由拉格朗日中值公式可得:
f ( x 0 + h ) − f ( x 0 ) = f ′ ( ξ 1 ) ( x 0 + h − x 0 ) = f ′ ( x 0 + θ 1 h ) h , 0 < θ 1 < 1 (1) f(x_0+h)-f(x_0)=f'(\xi_1)(x_0+h-x_0)=f'(x_0+\theta_1h)h,0<\theta_1<1\tag{1} f(x0+h)f(x0)=f(ξ1)(x0+hx0)=f(x0+θ1h)h,0<θ1<1(1)
f ( x 0 ) − f ( x 0 − h ) = f ′ ( ξ 2 ) ( x 0 − x 0 + h ) = f ′ ( x 0 − θ 2 h ) h , 0 < θ 2 < 1 (2) f(x_0)-f(x_0-h)=f'(\xi_2)(x_0-x_0+h)=f'(x_0-\theta_2h)h,0<\theta_2<1\tag{2} f(x0)f(x0h)=f(ξ2)(x0x0+h)=f(x0θ2h)h,0<θ2<1(2)
上面由于 ξ 1 \xi_1 ξ1是在 x 0 x_0 x0 x 0 + h x_0+h x0+h之间的,所以可以写成最后那个样子 ( ξ 1 = x 0 + θ 1 h (\xi_1=x_0+\theta_1h (ξ1=x0+θ1h是等价的, ξ 2 \xi_2 ξ2同理。
等式(1)减(2)得:
f ( x 0 + h ) + f ( x 0 − h ) − 2 f ( x 0 ) = [ f ′ ( x 0 + θ 1 h ) − f ′ ( x 0 − θ 2 h ) ] h (3) f(x_0+h)+f(x_0-h)-2f(x_0)=[f'(x_0+\theta_1h)-f'(x_0-\theta_2h)]h\tag{3} f(x0+h)+f(x0h)2f(x0)=[f(x0+θ1h)f(x0θ2h)]h(3)
对等式(3)中的 f ′ ( x 0 + θ 1 h ) − f ′ ( x 0 − θ 2 h ) f'(x_0+\theta_1h)-f'(x_0-\theta_2h) f(x0+θ1h)f(x0θ2h)再来一次拉格朗

中值公式:
f ′ ( x 0 + θ 1 h ) − f ′ ( x 0 + θ 2 h ) = f ′ ′ ( ξ 3 ) ( x 0 + θ 1 h − x 0 + θ 2 h ) f'(x_0+\theta_1h)-f'(x_0+\theta_2h)=f''(\xi_3)(x_0+\theta_1h-x_0+\theta_2h) f(x0+θ1h)f(x0+θ2h)=f(ξ3)(x0+θ1hx0+θ2h) = f ′ ′ ( ξ 3 ) ( θ 1 + θ 2 ) h (4) =f''(\xi_3)(\theta_1+\theta_2)h\tag{4} =f(ξ3)(θ1+θ2)h(4)
将(4)带入(3):
f ( x 0 + h ) + f ( x 0 − h ) − 2 f ( x 0 ) = f ′ ′ ( ξ 3 ) ( θ 1 + θ 2 ) h 2 (5) f(x_0+h)+f(x_0-h)-2f(x_0)=f''(\xi_3)(\theta_1+\theta_2)h^2\tag{5} f(x0+h)+f(x0h)2f(x0)=f(ξ3)(θ1+θ2)h2(5)
对于定理的第一种情况
(1)若在(a,b)内 f n ( x ) > 0 f^n(x)>0 fn(x)>0,则 f ( x ) f(x) f(x)在[a,b]上的图形是凹的;
我们可以由 f ′ ′ ( ξ 3 ) > 0 , ( θ 1 + θ 2 ) > 0 , h 2 > 0 f''(\xi_3)>0,(\theta_1+\theta_2)>0,h^2>0 f(ξ3)>0(θ1+θ2)>0,h2>0,对公式(5)判断:整体大于0,即:
f ( x 0 + h ) + f ( x 0 − h ) − 2 f ( x 0 ) > 0 f(x_0+h)+f(x_0-h)-2f(x_0)>0 f(x0+h)+f(x0h)2f(x0)>0
x 1 = x 0 − h x_1=x_0-h x1=x0h x 2 = x 0 + h x_2=x_0+h x2=x0+h x 1 + x 2 2 = x 0 \frac{x_1+x_2}{2}=x_0 2x1+x2=x0带回去
f ( x 2 ) + f ( x 1 ) > 2 f ( x 1 + x 2 2 ) f(x_2)+f(x_1)>2f(\frac{x_1+x_2}{2}) f(x2)+f(x1)>2f(2x1+x2)
证明完毕
f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f\left(\frac{x_1+x_2}{2}\right)<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
情况二类似。

3.函数的极值

定义设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某邻域 U ( x 0 ) U(x_0) U(x0)内有定义,如果对于去心邻域 U o ( x 0 ) \overset{o}{U}(x_0) Uo(x0)内的任一x,有
f ( x ) < f ( x 0 ) ( 或 f ( x ) > f ( x 0 ) ) f(x)<f(x_0)(或f(x)>f(x_0)) f(x)<f(x0)(f(x)>f(x0))
说人话:就是 x 0 x_0 x0比附近所有的x的值都大(小)。
那么就称 f ( x 0 ) f(x_0) f(x0)是函数 f ( x ) f(x) f(x)的一个极大值(或极小值).
在这里插入图片描述
定理1(必要条件):设函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导,且在 x 0 x_0 x0处取得极值,则 f ′ ( x ) = 0 f'(x)=0 f(x)=0

定理2(第一充分条件):设函数 f ( x ) f(x) f(x) x 0 x_0 x0处连续,且在 x 0 x_0 x0的某去心邻域 U o ( x 0 , δ ) \overset{o}{U}(x_0,\delta) Uo(x0,δ)内可导.
(1)若 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x(x0δ,x0)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,而 x ∈ ( x 0 , x 0 + δ ) x\in (x_0,x_0+\delta) x(x0,x0+δ)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值;
说人话:在x的左边导数大于0(函数递增),右边导数小于0(函数递减).
(2)若 x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x(x0δ,x0)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,而 x ∈ ( x 0 , x 0 + δ ) x\in (x_0,x_0+\delta) x(x0,x0+δ)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值;
(3)若 x ∈ U o ( x 0 , δ ) x\in \overset{o}{U}(x_0,\delta) xUo(x0,δ)时, f ′ ( x ) f'(x) f(x)的符号保持不变,则 f ( x ) f(x) f(x) x 0 x_0 x0处没有极值。

定理3(第二充分条件):设函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有二阶导数且 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0
f ′ ′ ( x 0 ) ≠ 0 f''(x_0)\neq0 f(x0)=0,则
(1)当 f ′ ′ ( x 0 ) < 0 f''(x_0)<0 f(x0)<0时,函数 f ( x ) f(x) f(x) x 0 x_0 x0处取得极大值;
(2)当 f ′ ′ ( x 0 ) > 0 f''(x_0)>0 f(x0)>0时,函数 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值.
这个定理3是根据函数的凹凸性来进行判断了,也可以用泰勒展开式来进行判断。

4.不定积分(求原函数)

定义1:如果在区间 I I I上,可导函数 F ( x ) F(x) F(x)的导函数为 f ( x ) f(x) f(x),即对任一 x ∈ I x\in I xI,都有
F ′ ( x ) = f ( x ) 或 d F ( x ) = f ( x ) d x F'(x)=f(x)或dF(x)=f(x)dx F(x)=f(x)dF(x)=f(x)dx,那么函数F(x)就称为 f ( x ) ( 或 f ( x ) d x ) f(x)(或f(x)dx) f(x)f(x)dx在区间 I I I上的一个原函数
定义2:在区间 I I I上,函数 f ( x ) f(x) f(x)的带有任意常数项的原函数称为 f ( x ) f(x) f(x)(或 f ( x ) d x f(x)dx f(x)dx)在区间 I I I上的不定积分,记作
∫ f ( x ) d x \int f(x)dx f(x)dx
其中记号 ∫ \int 称为积分号, f ( x ) f(x) f(x)称为被积函数, f ( x ) d x f(x)dx f(x)dx称为被积表达式, x x x称为积分变量。
由此定义及前面的说明可知,如果 F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的一个原函数,那么 F ( x ) + C F(x)+C F(x)+C就是 f ( x ) f(x) f(x)的不定积分,即
∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C f(x)dx=F(x)+C
性质1:设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的原函数存在,则:
∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int[f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx [f(x)+g(x)]dx=f(x)dx+g(x)dx
性质2:设函数 f ( x ) f(x) f(x)的原函数存在,k为非零常数,则
∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx=k\int f(x)dx kf(x)dx=kf(x)dx

第一类换元法(凑微分)

定理1:设 f ( u ) f(u) f(u)具有原函数, u = φ ( x ) u=\varphi(x) u=φ(x)可导,则有换元公式
∫ f [ φ ( x ) ] φ ′ ( x ) d x = [ ∫ f ( u ) d u ] u = φ ( x ) \int f[\varphi(x)]\varphi'(x)dx=\left [\int f(u)du\right]_{u=\varphi(x)} f[φ(x)]φ(x)dx=[f(u)du]u=φ(x)
例子:求 ∫ 2 c o s 2 x d x \int 2cos2xdx 2cos2xdx
∫ 2 c o s 2 x d x = ∫ c o s 2 x d 2 x \int 2cos2xdx=\int cos2xd2x 2cos2xdx=cos2xd2x
u = 2 x u=2x u=2x
∫ c o s 2 x d 2 x = ∫ c o s u d u = s i n u + C \int cos2xd2x=\int cosudu=sinu+C cos2xd2x=cosudu=sinu+C
带回 u = 2 x u=2x u=2x
∫ 2 c o s 2 x d x = s i n 2 x + C \int 2cos2xdx=sin2x+C 2cos2xdx=sin2x+C

第二类换元法

定理2:设 x = ψ ( t ) x=\psi(t) x=ψ(t)是单调的可导函数,并且 ψ ′ ( t ) ≠ 0. \psi'(t)\neq0. ψ(t)=0.又设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ(t)具有原函数,则有换元公式
∫ f ( x ) d x = [ ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t ] t = φ − 1 ( x ) \int f(x)dx=\left [\int f[\psi(t)]\psi'(t)dt\right]_{t=φ^{-1}(x)} f(x)dx=[f[ψ(t)]ψ(t)dt]t=φ1(x)
其中 φ − 1 ( x ) φ^{-1}(x) φ1(x) x = ψ ( t ) x=\psi(t) x=ψ(t)的反函数.

分部积分法

∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu
例子:求 ∫ x c o s x d x \int xcosxdx xcosxdx
∫ x c o s x d x = ∫ x d s i n x = x s i n x − ∫ s i n x d x = x s i n x + c o s x + C \int xcosxdx=\int x dsinx=xsinx-\int sinxdx=xsinx+cosx+C xcosxdx=xdsinx=xsinxsinxdx=xsinx+cosx+C

5.定积分

定积分的意义:曲线的面积
在这里插入图片描述
在区间[a,b]中任意插入若干个分点
a = x 0 < x 1 < x 2 < … … < x n − 1 < x n = b a=x_0<x_1<x_2<……<x_{n-1}<x_n=b a=x0<x1<x2<<xn1<xn=b
把[a,b]分成n个小区间
[ x 0 , x 1 ] , [ x 1 , x 2 ] , … , [ x n − 1 , x n ] [x_0,x_1],[x_1,x_2],…,[x_{n-1},x_n] [x0,x1],[x1,x2],,[xn1,xn]
它们的长度依次为
Δ x 1 = x 1 − x 0 , Δ x 2 = x 2 − x 1 , . . . , Δ x n = x n − x n − 1 \Delta x_1=x_1-x_0,\Delta x_2=x_2-x_1,...,\Delta x_n=x_n-x_{n-1} Δx1=x1x0,Δx2=x2x1,...,Δxn=xnxn1
面积A为:
A ≈ f ( ξ 1 ) Δ x 1 + f ( ξ 2 ) Δ x 2 + . . . + f ( ξ n ) Δ x n = ∑ i = 1 n f ( ξ i ) Δ x i A\approx f(\xi_1)\Delta x_1+f(\xi_2)\Delta x_2+...+f(\xi_n)\Delta x_n=\sum_{i=1}^nf(\xi_i)\Delta x_i Af(ξ1)Δx1+f(ξ2)Δx2+...+f(ξn)Δxn=i=1nf(ξi)Δxi
其中 ξ i \xi_i ξi是在 x i − 1 ∼ x i x_{i-1}\sim x_i xi1xi区间的任意一个值。
为了保证所有小区间的长度都无限缩小,我们要求小区间长度中的最大者趋于零,如记 λ = m a x ∣ Δ x 1 , Δ x 2 , … , Δ x n ∣ \lambda=max|\Delta x_1, \Delta x_2,…,\Delta x_n| λ=maxΔx1,Δx2,,Δxn,则上述条件可表示为 λ → 0 \lambda \to0 λ0.当 λ → 0 \lambda \to0 λ0时(这时分段数n无限增多,即 n → ∞ n\to \infty n),取上述和式的极限,便得曲边梯形的面积
A = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i A=\lim_{\lambda\to0}\sum_{i=1}^nf(\xi_i)\Delta x_i A=λ0limi=1nf(ξi)Δxi
∫ a b f ( x ) d x = I = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_a^bf(x)dx=I= \lim_{\lambda\to0}\sum_{i=1}^nf(\xi_i)\Delta x_i abf(x)dx=I=λ0limi=1nf(ξi)Δxi

牛顿莱布尼茨公式

定理3(微积分基本定理)如果函数 F ( x ) F(x) F(x)是连续函数 f ( x ) f(x) f(x)在区间[a,b]
上的一个原函数,那么
∫ a b f ( x ) d x = F ( b ) − f ( a ) \int_a^bf(x)dx=F(b)-f(a) abf(x)dx=F(b)f(a)

换元法

在这里插入图片描述

分部积分

例子:
∫ 0 1 x e − x d x = ∫ 0 1 − x d e − x = [ − x e − x ] 0 1 − ∫ 0 1 e − x d − x \int_0^1xe^{-x}dx=\int_0^1-xde^{-x}=\left[-xe^{-x}\right]_0^1-\int_0^1e^{-x}d{-x} 01xexdx=01xdex=[xex]0101exdx
= ( − 1 e − 1 ) − ∫ 1 0 e u d u = − e − 1 − [ e u ] 1 0 = e − 1 − 1 + e =(-1e^{-1})-\int_1^0e^udu=-e^{-1}-[e^u]_1^0=e^{-1}-1+e =(1e1)10eudu=e1[eu]10=e11+e

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oldmao_2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值