Burnside引理和Polya定理 & [bzoj 1004] [HNOI2008]Cards:Burnside引理,动态规划

题意:有Sr张红色牌、Sg张绿色牌和Sb张蓝色牌,m种洗牌法(置换),两种牌相同当且仅当一种能洗成另一种,保证洗牌法满足封闭性、存在逆元,问有多少种染色方案。输出答案模质数p的结果,Max{Sr,Sb,Sg}<=20,m<=60,m+1<p<100。

Burnside引理用于解决等价类计数问题。

设G是置换群,定义等价关系R:

R={(a,b)|a,bΩ,fG:b=f(a)}

设L是 Ω 中所有等价类,从每一类中任取一元素构成的集合,则

|L|=gGc1(g)|G|

其中 c1(g) g 函数不动点的数目,即g作用其上得到它本身的元素个数。

证明:
Zk k 的转置不动类,Ek k 的等价类。

|L|=xL|Ex||Ex|=xLyEx1|Ey|=xLyEx|Zy||G|=xΩ|Zx||G|=gGc1(g)|G|

其中第三个等号用到这样一个等式:

|Zk||Ek|=|G|

证明如下:
显然 Zk G 的子群,由拉格朗日陪集定理知|G| |Zk| 的倍数……
子群的陪集是不相交的,如果 f,g Zk 的同一个陪集内,则把它们分到一类,那么 G 被划分为一些子集,由陪集的性质,每个子集大小为|Zk|
f=gh,gG,hZk ,则 f(k)=g(k) ,即一类中的函数作用在 k 上得到同一个元素。显然这些类与Zk形成一一对应,于是一共有 |Ek| 类。

问贺神这个等式怎么证,贺神推荐了陪集的概念、拉格朗日定理,于是我脑补了以上几段。目前也只能给出这样叙述不甚严谨的证明了QAQ

Polya定理是Burnside引理很显然的推论。对于一个置换 f ,把它分解为m(f)个循环。 f 的不动点必须使得每个循环内的格子颜色相同。设共有d种颜色,那么 c1(f)=dm(f) 。Polya定理:等价类的个数等于所有置换 f dm(f)的平均数。

学习Burnside引理和Polya定理要明确概念:等价类是 Ω 上的,置换和函数复合运算构成置换群 <G,> <script type="math/tex" id="MathJax-Element-178"> </script>。使用它们必须验证描述等价关系的 G 满足封闭性、存在单位元和逆元,结合律已由函数复合运算的性质保证。

让我们来看一看bzoj 1004。由于每种颜色有数目限制,不能直接使用Polya定理的公式,但其思想仍可借鉴。将每种洗牌法分解为循环,每个循环内的格子必须同色。定义状态为考虑到第几个循环、每种颜色分别有多少可用,DP即可。四个维度中可以去掉一维颜色,这里使用记忆化搜索,事实上没求解这些无用的状态。时间复杂度O(mn3)

题目仅保证封闭性和逆元的存在性,我们需要自己加上单位元。其实还应该验证一下各个洗牌法互不相同,不过出题人挺良心。

#include <cstdio>
#include <cstring>
using namespace std;
const int MAX_N = 60, MAX_C = 20;
int p, a[MAX_N+1], sz[MAX_N+1], f[MAX_N+1][MAX_C+1][MAX_C+1][MAX_C+1];
bool vis[MAX_N+1];

int inv(int x)
{
    int y = 1;
    for (int n = p-2; n; n >>= 1) {
        if (n & 1)
            y = y*x%p;
        x = x*x%p;
    }
    return y;
}

int dp(int k, int r, int b, int g)
{
    if (k == 0)
        return 1;
    int& x = f[k][r][b][g];
    if (x >= 0)
        return x;
    x = 0;
    if (r >= sz[k])
        x += dp(k-1, r-sz[k], b, g);
    if (b >= sz[k])
        x += dp(k-1, r, b-sz[k], g);
    if (g >= sz[k])
        x += dp(k-1, r, b, g-sz[k]);
    return x %= p;
}

int main()
{
    int sr, sb, sg, m;
    scanf("%d %d %d %d %d", &sr, &sb, &sg, &m, &p);
    int n = sr+sb+sg;
    memset(f, -1, sizeof(f));
    for (int i = 1; i <= n; ++i)
        sz[i] = 1;
    int ans = dp(n, sr, sb, sg);
    for (int k = 1; k <= m; ++k) {
        for (int i = 1; i <= n; ++i)
            scanf("%d", &a[i]);
        memset(vis, 0, sizeof(vis));
        int cnt = 0;
        for (int i = 1; i <= n; ++i) {
            if (vis[i])
                continue;
            vis[i] = true, sz[++cnt] = 1;
            for (int j = a[i]; j != i; j = a[j])
                vis[j] = true, ++sz[cnt];
        }
        memset(f, -1, sizeof(f));
        ans += dp(cnt, sr, sb, sg);
    }
    printf("%d\n", ans*inv(m+1)%p);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值