1. 设计网络的动机
目前现有的特征提取方法大多都是用分层方式表示多尺度特征。分层方式即要么对每一层使用多个尺度的卷积核进行提特征(如SPPNet),要么就是对每一层提取特征进行融合(如FPN)。
本文提出的Res2Net在原有的残差单元结构中又增加了小的残差块,增加了每一层的感受野大小。Res2Net也可以嵌入到不同的特征提取网络中,如ResNet, ResNeXt, DLA等等。
2. Res2Net
2.1 Res2Net网络模型
上图左边是最基本的卷积模块。右图是针对中间的3x3卷积进行的改进。
首先对经过1x1输出后的特征图按通道数均分为s(图中s=4)块,每一部分是xi,i ∈ {1,2,...,s}。
每一个xi都会具有相应的3x3卷积,由Ki()表示。我们用yi表示Ki()的输出。
特征子集xi与Ki-1()的输出相加,然后送入Ki()。为了在增加s的同时减少参数,我们省略了x1的3×3卷积,这样也可以看做是对特征的重复利用。