Fast-Lio 论文解读

本文深入解读Fast-LIO算法,探讨其系统框架和突出特点,包括采用紧耦合的迭代卡尔曼滤波融合激光雷达和IMU数据,反向传播补偿运动失真,以及计算复杂性优化的卡尔曼增益。同时,详细解析了系统模型和关键代码实现,包括状态估计、前向传播、残差计算等环节,并解答了代码与论文中状态量不对应的问题。
摘要由CSDN通过智能技术生成

目录

一、系统框架

二、fast-lio的突出点

三、系统模型

3.1 代码中的系统状态:

3.2 State Estimation

3.3  Forward Propagation

3.4 The propagated covariance

3.5 Backward Propagation and motion compensation

3.6 Residual Computation

3.7 Iterated State update

 3.8 prior distribution

3.9 the whole process

四、代码解读

1: get_f 函数

2: df_dx 函数

3: df_dw 函数

4. Fw 与Fi 与论文不对应的原因:


一、系统框架

二、fast-lio的突出点

  1. 采用紧耦合迭代卡尔曼滤波器融合激光雷达特征点IMU测量;
  2. 提出一个正式的反向传播补偿运动失真的过程;
  3. 计算卡尔曼增益及其与常规增益的等价性卡尔曼增益公式。新公式有一个计算复杂性取决于状态维度,而不是测量尺寸
  4. combine this ICP method with a point- to-edge distance and developed a LiDAR odometry and mapping (LOAM) framework

三、系统模型

3.1 代码中的系统状态:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

他人是一面镜子,保持谦虚的态度

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值