目录
3.5 Backward Propagation and motion compensation
一、系统框架

二、fast-lio的突出点
- 采用紧耦合迭代卡尔曼滤波器融合激光雷达特征点IMU测量;
- 提出一个正式的反向传播补偿运动失真的过程;
- 计算卡尔曼增益及其与常规增益的等价性卡尔曼增益公式。新公式有一个计算复杂性取决于状态维度,而不是测量尺寸
- combine this ICP method with a point- to-edge distance and developed a LiDAR odometry and mapping (LOAM) framework
本文深入解读Fast-LIO算法,探讨其系统框架和突出特点,包括采用紧耦合的迭代卡尔曼滤波融合激光雷达和IMU数据,反向传播补偿运动失真,以及计算复杂性优化的卡尔曼增益。同时,详细解析了系统模型和关键代码实现,包括状态估计、前向传播、残差计算等环节,并解答了代码与论文中状态量不对应的问题。
订阅专栏 解锁全文
1190

被折叠的 条评论
为什么被折叠?



