论文链接: https://arxiv.org/abs/1904.09569
1. 摘要
本文将通过扩展卷积神经网络中的池化部分来解决显著目标检测问题。
在特征金字塔的基础上,在bottom-up途径上加入GGM模块(global guidance module),旨在为不同特征层提供潜在显著对象的位置信息。在top-down途径加入FAM模块(feature aggregation module),将粗糙级的特征和细致级的特征进行更好的融合。这两个基于池化的模块允许逐步重新定义高级语义特征,从而产生细节丰富的显著性特征图。实验结果表明,我们提出的方法能够更准确地定位具有锐化细节的突出物体,从而大大提高了与以往技术水平相比的性能。
2. 概述
基于U型结构的网络(如特征金字塔)能够通过在分类网络上构建自上而下的路径来构建丰富的特征图,因此受到最多的关注。
(也就是说U型框架得到的语义信息更多。)但仍然有很大的提升空间。
首先,高级语义信息逐渐传输到较浅层,因此较深层捕获的位置信息可以同时逐渐稀释;
(U型网络中bottom-up阶段产生高级语义信息,再通过top-down阶段上采样,并与bottom-up阶段横向连接,虽然会将粗糙信息和细致信息连接起来,但同样会导致高级语义信息中的位置信息逐渐被稀释。)
其次,CNN的感受野尺寸与其层深度不成比例。